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Abstract—This paper describes a method for estimating the
relative pose of a pair of unmanned aerial vehicles (UAV) using
noisy measurements from ranging radios and each aircraft’s
on board navigation system. In this method, there is no prior
information needed about the relative pose of each UAV. During
the estimation of the relative pose of two traveling UAVs, only
a single range measurement between UAVs is needed at each
location. To augment this limited information, motion is used to
construct a graph with the range measurements and displacement
in position over multiple locations. First, the analytical solution
is derived for the pose from the constructed graph assuming the
system is free of noise. Then, the relative heading and bearing are
estimated from noisy range measurements and the displacement
in position using nonlinear least squares. The sensitivity to the
geometry and measurement noise are then analyzed for various
trajectories. For this paper, the problem is analyzed for the two-
dimensional case where the UAVs are traveling at equal altitudes.

Keywords—relative navigation; cooperative control; range-only
measurements

I. INTRODUCTION AND RELATED WORK

In applications involving multiple Unmanned Aerial Vehi-
cles (UAV) such as formation flight, surveillance, coopera-
tive control, and mapping, the relative pose between UAVs
provides vital information for coordinating effectively. In
formation flight, the follower is controlled based on the
relative position of the leader. For localization and mapping,
the transformation between each UAVs reference frame is
necessary to fuse information to construct a map of the envi-
ronment. In the case GPS is not available, each UAV must rely
relative sensor measurements in order to navigate in a common
frame of reference. The majority of distributed estimation
tasks require the ability to transform measurements between
reference frames for each UAV. In [1], a relative navigation
filter is developed to enable target hand-off in a GPS-denied
environment, but in order to run the filter, the transformation
between reference frames is required to initialize the filter.
In many cases, UAVs may rely on sensors that only provide
range measurements between UAVs due to environmental or
hardware constraints. More importantly, the majority of work
on localization either require stationary landmarks or are not
limited to range only measurements. Localization using range
only measurements has been studied extensively for static
sensor networks [2]. Several algorithms have been proposed
for determining the relative position of each node; however,
wireless sensor networks consist of many stationary nodes, and
the relative orientation is not of interest in these algorithms.
Localization for mobile robots in two dimensions using range
only measurements have been demonstrated in [3], [4], [5]. In

these works, the robots travel through a sequence of random
positions and orientations, and the relative position between
robots is determined using range only measurements. The
problem presented in this work is similar to the problem
presented in [3], [4], [5], but in contrast, this work presents
a method for determining the relative position and orienta-
tion using coordinated motion rather than arbitrary motion.
Specifically, we show that when two UAVs travel at constant
velocity there are at most four solutions for the relative pose
after collecting three range measurements. In addition, the total
number of solutions are reduced to obtain a single unique
solution with one additional measurement by performing a
single maneuver. For certain trajectories, the relative pose may
have less than three solutions after three measurements or the
solution may be indeterminate. To verify the algorithm, an
estimation algorithm is presented for estimating all the solu-
tions and obtaining a single unique solution using cooperative
control. In addition, Monte Carlo simulations are completed
to analyze the sensitivity to geometry and measurement noise.

II. PROBLEM FORMULATION

In this paper, we consider two UAVs, platform A and
platform B. Initially, each platform moves at a constant
velocity through a sequence of positions {A1, A2, ..., An} for
platform A and {B1, B2, ..., Bn} for platform B. At each of
these locations, both platforms measure the distance between
platforms {d1, d2, ..., dn}. In addition, the displacement in
position between locations for each platform is measured
using each platform’s on board navigation system. The dis-
placement in position between locations will be denoted as
{dA,1, dA,2, dA,n−1} for platform A and {dB,1, dB,2, dB,n−1}
for platform B where n is the total number of locations. Note
that the displacement in position between locations will be
referred to as simply the displacement. Since the displacement
is not dependent on the reference frame, the displacement can
be exchanged between platforms. Note the particular method
for determining the displacement does not affect the solution
for this problem since the displacement is not dependent on the
reference frame. The trajectory for platform A and platform
B after traveling through three locations is presented in Fig.
1. In this paper, we consider the scenario of determining the
relative pose of platform B in polar coordinates with respect
to platform A. The relative bearing of platform B is denoted
by φB and the radial coordinate of platform B is denoted by
rB . The formulation presented in this work is equivalent when
determining the relative position of platform A with respect
to platform B.



Fig. 1. Trajectories of platforms A and B for three positions. The po-
sition of each platform is denoted by A1, A2, ..., An for platform A and
B1, B2, ..., Bn for platform B where n is the total number of locations. The
displacement in distance between locations is denoted as dA,1, dA,2, dA,n−1

for platform A and dB,1, dB,2, dB,n−1 for platform B

III. ANALYTICAL SOLUTIONS WITH THREE RANGE
MEASUREMENTS

A. Connection to Mechanical Linkages

If each platform travels at a constant velocity, the arrange-
ment of distance measurements is analogous to a mechanical
linkage. At constant velocity, the path between locations is
straight, so the trajectories of each platform can be mod-
eled as rigid links with length equal to the displacement in
position between locations. These links are represented by
{dA,1, dA,2, dA,n−1} for platform A and {dB,1, dB,2, dB,n−1}
for platform B. In addition, the range between platforms at
each location can be modeled as rigid links. These links
are represented by the range measurements {d1, d2, ..., dn}.
At each location, the links are connected by the position of
both platforms, which are modeled as revolute joints. The
number of joints and links in this linkage are determined by
the number of locations. For any number of locations, the
length of each link is known from the displacement in position
and the range between platforms. The goal is to solve for the
orientation of the each link with respect to the fixed link since
this will provide the relative pose between platforms at each
location. To determine the orientation of each link without
prior information, the linkage must be a rigid structure. Using
the Kutzbach criterion, the mobility, M , can be obtained for
any number of measurements given the number of links n, the
number of single degree of freedom joints j1, and the number
of two degree of freedom joints, j2. The Kutzbach criterion
as defined in [7] is

(1)M = 3(n− 1)− 2j1 − j2.

If each platform travels through two locations and obtains
a measurement at each location, the linkage will consist of
four revolute joints and four links in total to form a four bar
mechanism. Considering the Kutzbach criterion for this four
bar mechanism, this linkage consists of a single degree of
freedom. This means that the configuration of the linkage is
defined by a single parameter in addition to the link lengths
[7], and the linkage is indeterminate without the prior knowl-
edge of the orientation of one of the free links. If each platform
travels through three locations and obtains a measurement at

each location, the linkage will consist of six revolute joints
and seven links in total to form a seven bar mechanism.
Since the platforms are traveling at constant velocity, the links
representing the displacement can be combined to form a
single rigid link for each platform. This means the number
of links in the linkage is reduced from seven links to five
links, so the linkage will consist of six revolute joints and five
links in total to form a five bar linkage. Considering Kutzbach
criterion for this five bar mechanism, this linkage consists of
zero degrees of freedom. This means the linkage is a rigid
structure, so prior information about the orientation of the
links is not needed to solve for the configuration given the
length of each link. This is roughly equivalent to adding a
single rigid link between the fixed link and coupler in a four
bar mechanism. Although prior information is not needed to
solve for the configuration of the linkage, this does not mean
there is a single solution for the linkage. The linkage may
be constructed in multiple different configurations, but each
configuration can be obtained independently from the link
lengths.

Using this analogy, the relative position of B with respect
to A can be obtained by solving the loop closure equations of
the five bar linkage formed from the displacement in position,
distance between platforms, and the locations of platform A
and platform B. We define each link as a vector defined by the
link length r1 = dA1+dA2, r2 = d3, r3 = dB1+dB2, r4 = d1,
and r5 = d2, and the angle between the horizontal axis and the
link θ1, θ2, θ3, θ4, and θ5. The linkage constructed from the
trajectories of platform A and platform B is presented in Fig.
2. Since the goal is to obtain the relative position of platform
B with respect to platform A, the displacement in position of
platform A, r1, is set as the fixed link, so the angle of each
link is relative to r1. This means the linkage is constructed in
the inertial frame of platform A. Note θ1 is not presented in
Fig. 2 because the free links are relative to the fixed link, r1.

Fig. 2. Single configuration of 5 bar linkage constructed from the UAV
trajectories for 3 locations where r1 = dA1 + dA2, r2 = d3, r3 = dB1 +
dB2, r4 = d1, and r5 = d2. Note θ1 is not displayed because θ1 = 0.

B. Finding θ3
The loop closure equations for the linkage in vector form

are defined by (2) and (3).

(2)~r1 + ~r2 =
dA1

r1
~r1 +

dB2

r3
~r3 + ~r5

(3)
dA1

r1
~r1 + ~r5 =

dB1

r3
~r3 + ~r4



Equations (2) and (3) can be rearranged and separated in real
and imaginary components in (4) and (5).

i: r2 sin θ2 = r5 sin θ5 + dB2 sin θ3 + dA2 sin θ1

j: r2 cos θ2 = r5 cos θ5 + dB2 cos θ3 + dA2 cos θ1
(4)

i: r4 sin θ4 = r5 sin θ5 − dB1 sin θ3 + dA1 sin θ1

j: r4 cos θ4 = r5 cos θ5 − dB1 cos θ3 + dA1 cos θ1
(5)

Since the links are relative to r1, the angle of r1 does not
change the outcome of the solution, so any angle can be
chosen for θ1. If the real and imaginary parts of (4) and (5) are
squared and summed, θ2 can be eliminated from (4) and θ4 can
be eliminated from (5) using the Pythagorean trigonometric
identity given by sin θ2 + cos θ2 = 1. Letting θ1 = π/2, (4)
and (5) can be reduced to (6) and (7).

(6)r22 = r25 + r5(2dB2 sin θ3 sin θ5 + 2dB2 cos θ3 cos θ5

− 2dA2 sin θ5)− 2dA2dB2 sin θ3 − d2A2 + d2B2

(7)r24 = r25 − r5(2dB1 sin θ3 sin θ5 + 2dB1 cos θ3 cos θ5

− 2dA1 sin θ5)− 2dA1dB1 sin θ3 + d2A1 + d2B1

If platform A and platform B are moving at a constant speed,
dA1 = dA2 = dA and dB1 = dB2 = dB . Substituting these
values and combining (6) and (7), a single equation is obtained
for θ3 as a function of the link lengths.

(8)r22 + r24 = 2r25 − 4dAdB sin θ3 + 2d2A + 2d2B

Equation (8) can be rearranged to obtain a more simple solu-
tion. Let ra = −4dAdB and rb = r22 + r

2
4− 2r25− 2d2A− 2d2B .

Substituting ra and rb in (8), the following equations are
obtained for the sin θ3 when θ1 = π/2 and for the cos θ3
when θ1 = 0

(9)ra sin θ3 = rb

(10)ra cos θ3 = rb

The angle between the trajectories of platform A and platform
B, θ3, has a single unique solution where 0 ≤ θ3 ≤ π. Note
that the angle between trajectories is not equal to the relative
orientation. The relative orientation is equal in magnitude
to the angle between trajectories, but the angle between
trajectories is always positive, so θB = ±θ3. The potential
solutions for θ2 can be obtained using the result of θ3, but the
solutions for θ2 must be reflected across the path of platform
A.

C. Finding θ2
Consider the following loop closure equation of the linkage

presented in Fig. 2 defined by (11).

(11)~r1 + ~r2 = ~r3 + ~r4

Similar to the derivation for θ3, (11) can be rearranged and
separated into real and imaginary components.

i: r4 sin θ4 = r1 sin θ1 + r2 sin θ2 − r3 sin θ3
j: r4 cos θ4 = r1 cos θ1 + r2 cos θ2 − r3 cos θ3

(12)

Since θ1 and θ3 are known values, the constants u and v can
be defined as

u = r1 sin θ1 − r3 sin θ3
v = r1 cos θ1 − r3 cos θ3.

Then, the real and imaginary parts of (12) can be squared and
summed to obtain (13).

(13)r24 − r22 − u2 − v2 = 2ur2 sin θ2 − 2vr2 cos θ2

Equation 13 has the form a sin θ2 + b cos θ2 = c, where

a = 2ur2

b = −2vr2
c = −r22 + r24 − u2 − v2.

Equation 13 can be written in terms of tangent instead of sine
and cosine by substituting the half-angle formulas to obtain
sine and cosine in terms of tangent of the half angle. If t =
tan θ2/2, then sin θ2 = 2t/(1+t2) and cos θ2 = (1−t2)/(1+
t2). After substituting θ3, we obtain the following equations
for t

(14)αt2 + βt+ γ = 0

where α = −b− c, β = 2a, and γ = b− c. The same process
can be completed to obtain solutions for θ4 and θ5. Although
these equations are second order polynomials, the solutions
can be reflected on either side of the straight line trajectory of
platform A, so at least 4 solutions exist for θ2, θ4, and θ5. Since
the relative position is completely defined by r2 and θ2, it is
only necessary to estimate θ2 and θ3. Note that θ2 is a function
of θ3 and the distance measurements, θ2 = f(d1, d2, d3, θ3)
and θ3 is only a function of the distance measurements, θ3 =
f(d1, d2, d3). Since the velocity is constant, the terms dA and
dB are constant.

IV. ESTIMATING THE RELATIVE POSE WITH NOISE

If the system is free of noise, the four possible solutions
of the relative position can simply be obtained by plugging in
the necessary values in (10) and (14) to obtain the solutions
in polar coordinates. Since the measurements of the range
between platforms and the displacement in position are both
noisy, the system may be inaccurate or unsolvable depending
on the magnitude of the noise and the geometry of the
trajectories. Since the platforms are traveling at a constant
velocity, the angle between the trajectories, θ3, is constant over
any number of time steps. Due to this, a system of equations
for θ3 can be formed where n is the number of observations.

(15)


ra(d1, d2, d3)
ra(d2, d3, d4)

.

.
ra(dn−2, dn−1, dn)

 sin θ3 =


rb(d1, d2, d3)
rb(d2, d3, d4)

.

.
rb(dn−2, dn−1, dn)


Using linear least squares, a batch estimate of θ3 can be
performed using multiple observations. Note that each obser-
vation includes three measurements, so the relative position
cannot be estimated without at least three observations. For



example, observation at time step k includes measurements
from k, k − 1, and k − 2. The sensitivity to geometry and
noise for θ3 will be discussed in the results section. Since
the distance between platforms is measured directly, only
the relative bearing of platform B must be estimated using
(14). Using the quadratic equation, each of the four solutions
can be determined using nonlinear least squares to estimate
t = tan θ2/2.

(16)2αt = −β ±
√
β2 − 4αγ

Note α, β, and γ are all functions of θ3 in addition to the
link lengths, so θ3 must be estimated prior to estimating θ2.
Since the relative bearing changes at each time step, a batch
estimate of the relative bearing may only be performed at
certain geometries. Since the formulation is sensitive to noise,
the solutions are smoothed using exponential smoothing. In the
case β2− 4αγ < 0, additional measurements can be obtained
to solve for the relative bearing.

V. REDUCING THE NUMBER OF SOLUTIONS

After traveling through three locations, there are four pos-
sible solutions for the relative position of platform B, two
solutions for relative bearing for each of the two solutions
for the relative orientation. To find the correct solution, co-
operative control is used to assign weights to each solution.
After obtaining each of the four solutions, the relative pose
and velocity for each of the four solutions for platform B
are stored in memory, and platform A turns to a different
heading. At this point, the position of platform B in Cartesian
coordinates, (x̂B,k, ŷB,k), will be propagated using the most
recent estimates for each of the four solutions.

(17)x̂B,k+1 = x̂B,k + ẋB,kdt

(18)ŷB,k+1 = ŷB,k + ẏB,kdt

Note that if platform B exchanges position and velocity
information instead of only range information, the coordinate
frame transformation may be calculated for each of the four
solutions, and the position may be propagated using the
navigation system on board platform B. In the case this
information is not available, the position and velocity can be
obtained from the constructed linkage for each solution. To
determine the weights for each solution, the expected distance
between platforms for each solution is calculated using the
propagated position of platform B. Let d̂i,k be the expected
distance for the ith solution at time step k where (x̂A,k, ŷA,k)
and (x̂B,k, ŷB,k) are the position in Cartesian coordinates for
platform A and platform B, respectively.

(19)d̂k =
√

(x̂A,k − x̂B,k)2 + (ŷA,k − ŷB,k)2

Then, the residual distance, d̃, at time step k can be calculated
using the difference in the expected distance and the range
measurement.

(20)d̃k = d̂k − dk

If the system is free of noise, d̃ = 0 for the true solution and
d̃ 6= 0 for false solutions. The weights for each solution are
assigned as the inverse of the residual distance.

(21)w =
1

d̃k

If the system is free of noise, (21) approaches infinity for the
correct solution. In practice, the weight with the highest value
is chosen as the best solution.

VI. SPECIAL CASES

Depending on the geometry of the trajectories, the number
of possible solutions and singularity of θ2 may vary. When the
platforms are traveling at constant velocity, there are only four
possible cases for the geometry. The platforms must be either
be traveling along the same line, traveling along parallel lines
with equal velocity, traveling along parallel lines with different
velocity, or traveling along intersecting lines. If the platforms
are traveling along intersecting lines, there are at most four
solutions for the relative position regardless of the velocity
of each platform. For each case, the number of solutions
for the relative position are different, but there are at most
two solutions for the relative orientation in each case. Each
case is easily detectable using the relationships between the
displacement in position and the range between platforms. The
solutions for each case are discussed in this section.

A. Same Line

If the platforms are traveling along the same line in opposite
directions there exists a single unique solution for the position
and a single unique solution for the relative orientation. This is
detectable by comparing the magnitude of the velocity vectors
and the change in distance measurements between time steps.
When the platforms are traveling in opposite directions along
the same line, then

(22)dA1 + dB1 = |d1 − d2|

(23)dA2 + dB2 = |d2 − d3|

Note that d1, d2, and d3 are measurements of the distance
between platforms and dA and dB are the displacement in
position for platform A and platform B, respectively. The
absolute value is necessary because d1−d2 > 0 and d2−d3 >
0 when the platforms are traveling towards each other and
d1−d2 < 0 and d2−d3 < 0 when the platforms are traveling
away from each other. An illustration of this case is presented
in Fig. 3 for when the platforms are traveling along the same
line towards each other. If the platforms are traveling in the
same direction, then d1 − d2 = 0 and d2 − d3 = 0, and
there are an infinite number of solutions. This situation is
discussed in the following section. In the case the platforms are
not traveling along the same line, the change in the distance
measurement between platforms will always be less than the
sum of the distance traveled by each platform.



Fig. 3. Path of platform A and platform B when the platforms are traveling
towards each other.

B. Parallel with Equal Velocities

If the platforms are traveling parallel with equal velocities,
there are infinite solutions for the relative position and a single
unique solution for the relative orientation. An illustration
of this case is presented in Fig. 4. In this case, we have

Fig. 4. Path of platform A and platform B the platforms are traveling parallel
with equal velocities. In this case, θ3 = 0, dA1 = dA2 = dB1 = dB2, and
d1 = d2 = d3, so in (10) and (14), r2 = r4 = r5 and r1 = r2.

dA1 = dA2 = dB1 = dB2, r2 = r4 = r5 and r1 = r3.
If we substitute these values in (10), then cos θ3 = 1. Then,
θ1 = θ3 = 0, so substituting these values in (14) causes the
constants to equal zero. Therefore, θ2 is indeterminate because
(0)t22 + (0)t2 + (0) = 0 when the platforms are traveling
parallel with equal velocities. This can easily be visualized
from the constructed linkage. In this case, the linkage forms a
parallelogram structure, so the link formed by the displacement
in position of platform B can rotate through an infinite number
of positions.

C. Parallel with Different Velocities

If the platforms are traveling parallel at different speeds,
there are two unique solutions for the relative position and
a single unique solution for the relative orientation. In this
case, θ1 = 0 and θ3 = 0 because the platform are traveling
parallel. By substituting θ1 = 0 and θ3 = 0 into (14), β =
4r1r2 sin θ1 − 4r2r3 sin θ3 = 0, so (14) becomes

(24)αt2 + γ = 0

Note α 6= 0 and γ 6= 0 if both platforms are in motion and
are traveling at different velocities. Equation (24) has two
solutions, which are equal in magnitude but have opposite
signs. The solutions to (24) and the reflection are equivalent,
so there are only two solutions for the relative position when
the platforms are traveling parallel with different velocities.
An illustration of this case is presented in Fig. 5.

Fig. 5. Path of platform A and platform B when platforms are traveling
parallel with different velocities. In this case, θ3 = 0, dA1 + dA2 6= dB1 +
dB2.

D. Intersecting Lines

If the platforms are not traveling parallel and are not
traveling along the same line, there are four unique solutions
for the relative position and two unique solutions for the
relative orientation. In this case, θ3 6= 0, so there are two
solutions for the relative orientation. Equation (14) has two
solutions when the θ3 6= 0, and this solution may be reflected
across the path of platform A to account for the position and
negative solution of the relative orientation. An illustration of
this case is presented in Fig. 6. Notice the first and second
solution are for the positive relative orientation. The solutions
for the negative relative orientation are reflected across the
path of platform A to form the third and fourth solutions.

Fig. 6. Path of platform A and platform B when platforms are traveling
along intersecting lines. In this case, θ3 6= 0, and there are two solutions
for the relative orientation and four solutions for the relative position. The
solutions for the relative position of platform B are given by Bi,j where i
is the location number and j is the solution number.

VII. SIMULATION RESULTS

We consider here only the case where the platforms are
traveling along intersecting lines, as the other three cases
are not difficult to detect and are not as likely in most
scenarios. The simulations were performed by adding zero
mean Gaussian noise to the distance measurements between
platforms the displacement in position between locations. In
performing various simulations, the goal is to verify the algo-
rithm and analyze the sensitivity to different parameters. The
first experiment consists of a single path for platform A and
platform B. In this experiment, the platforms start in different
locations 150 meters apart. The distance intervals dA and
dB between observations is varied to analyze the sensitivity
to this parameter while the level of noise in the ranging



measurement and displacement are both held constant. The
level of ranging error for displacement has a standard deviation
between 1.7% the total displacement, which is based on the
typical performance of current visual odometry algorithms [8],
[9], [10], [11]. The average root mean square error (RMSE)
for the relative heading and relative bearing is presented in
Fig. 7 for 100 Monte Carlo trials for each distance interval.
As the distance interval increases, the error in both the relative
heading and relative bearing decrease. This is likely due to the
effect of the distance interval on the ratio of the displacement
in position to the distance between platforms, r2/r1. If r2/r1 is
small, the number of observation included in the least squares
estimate has little effect on the accuracy. This means that
only a few measurements are necessary to obtain an accurate
estimate if r2/r1 is small. If the platforms are far away from
each other, the time between observations must be increased
to obtain a larger distance interval and lower r2/r1, so each
platform must travel a straight line path for a longer amount of
time if the platforms are far away from each other. In the case
the platforms are flying in directions which increase the ratio
over time, the batch size can be increased to reduce drift and
variance by using additional observations when r2/r1 is small.
Note that r2/r1 always increases over time if the platforms are
traveling away from each other. This is because the distance
interval remains constant while the distance between platforms
increase. Since the platforms are required to travel at constant
velocity for this method, r2/r1 is guaranteed to increase if the
platforms are traveling away from each other. This issue can
be mitigated by performing a batch estimate which includes
observations when r2/r1 is small. Since r2/r1 is dependent on
the distance interval, similar performance can be obtained at
large distances by increasing the distance interval to reduce
r2/r1. The cumulative distribution function (CDF) for the
trials are presented in Fig. 8.

Fig. 7. Average RMSE for the relative heading and relative bearing of
platform B. The horizontal axis is the distance interval, and the vertical axis is
the average RMSE error. 100 trials were completed for each distance interval.

In the next experiment, the distance interval is held constant
at 25 meters. The level of noise in the ranging measurement
is held constant with a standard deviation of 0.05 meters,
and the level of noise in the displacement in position is held
constant at 1.7% the displacement. The flight path is varied by
changing the heading of platform B with respect to platform A
to analyze the sensitivity to flight path geometry. The RMSE

Fig. 8. CDF of the relative heading and relative bearing of platform B with
respect to platform A for various distance intervals. 100 trials were completed
for each distance interval.

of the relative heading and relative bearing are presented in
Fig. 9. The error for the relative heading is greatest when the
platform trajectories are nearly parallel. Although a parallel
configuration is detectable from the distance measurements,
the error in the relative position is still greatest in this
configuration. The CDF for the trials are presented in Fig.
10. The performance is similar for the platforms when the
trajectories are not near parallel with less than 1 degree error
for the relative heading and less than 5 degrees error for the
relative bearing in 100% of the trials at 45, 90, and 135 degrees
for the relative heading, but the performance decreases quickly
as the relative heading approaches 0 and 180 degrees.

Fig. 9. Average RMSE for the relative heading and relative bearing of
platform B. The horizontal axis is the relative heading of platform B, and
the vertical axis is the average RMSE error. 100 trials were completed for
each relative heading of platform B.

In the next experiment, the distance interval is held constant
at 25 meters, and the geometry is held constant with the
relative heading of platform B at 0 degrees. The level of noise
for the ranging measurement is varied based on high and low
quality ranging sensors. The level of noise for the displacement
in position is held constant with a standard deviation of 1.7%
of the displacement. The RMSE of the relative heading and
relative bearing are presented in Fig. 11. The CDF for the
trials are presented in 12.

In the next experiment, the distance interval is held constant
at 25 meters, and the geometry is held constant with the
relative heading of platform B at 0 degrees. The standard
deviation for the displacement in position is varied between



Fig. 10. CDF of the relative heading and relative bearing of platform B with
respect to platform A for various relative headings of platform B. 100 trials
were completed for each relative heading of platform B.

Fig. 11. Average RMSE for the relative heading and relative bearing
of platform B. The horizontal axis is the standard deviation of ranging
measurements between platforms, and the vertical axis is the average RMSE
error. 100 trials were completed for each level of ranging error.

Fig. 12. CDF of the relative heading and relative bearing of platform B with
respect to platform A for various levels of error for the ranging measurements
between platforms. 100 trials were completed for each level of ranging error.

1% and 5%. The level of noise for the ranging measurements
is held constant with a standard deviation of 0.05 meters.
The RMSE of the relative heading and relative bearing are
presented in Fig. 13. The CDF for the trials are presented in
14.

In the last experiment, the reduction of solutions is analyzed
for various geometries and noise levels. The objective of
this experiment is to verify the validity of the algorithm for
reducing the number of solutions. The distance interval is held
constant at 25 meters for this experiment, but the geometry and
initial position of each platform are varied for each simulation.

Fig. 13. Average RMSE for the relative heading and relative bearing of
platform B. The horizontal axis is the standard deviation as a fraction of
the total displacement between locations. 100 trials were completed for each
level of displacement error. Note the error is shown as the percentage of the
displacement.

Fig. 14. CDF of the relative heading and relative bearing of platform B
with respect to platform A for various levels of error for the displacement
in position between locations. 100 trials were completed for each level of of
displacement error. Note the standard deviation of the displacement are shown
as a percent of the total displacement.

The starting position of each platform is chosen as random
according to a uniform distribution within a 1000 by 1000
meters square.

Fig. 15. Percentage of trials that successfully predicted the correct solution
for various levels of error for the ranging error. The horizontal axis is the
heading of platform B and the vertical axis is the percentage of trials that
successfully predicted the correct solution.

As seen in Fig. 16, the relative heading of platform B
does not affect the accuracy of predicting the correct solution
except when the platforms are traveling parallel. In this case,
the correct solution is predicted in 100% of trials. When the
platforms are not traveling parallel, the level of error in the
ranging measurements and displacement in position greatly
affect the outcome of the algorithm. If the error is too large,
the algorithm may predict the incorrect solution. This is due to
the fact that the residual distance is calculated by propagating
the position obtained from relative bearing. If the error in the



Fig. 16. Percentage of trials that successfully predicted the correct solution
for various levels of error for the displacement error. The horizontal axis is
the heading of platform B and the vertical axis is the percentage of trials that
successfully predicted the correct solution.

relative bearing is too large, the residual distance may not
be accurate, which results in a false detection of the correct
solution.

VIII. CONCLUSION AND FUTURE WORK

This paper presents an algorithm for estimating the relative
pose between moving UAVs using range only measurements
and analyzes the sensitivity to flight geometry, observation
frequency, and measurement noise. The algorithm is only
dependent on measuring the distance between UAVs and
the displacement in position between measurement observa-
tions. The specific method for estimating the displacement
in position does not affect the algorithm. To analyze the
effectiveness, several simulations were completed varying the
observation frequency, geometry, and measurement noise. The
simulations show that the frequency of observation impacts the
performance more than the geometry or the amount of error in
the distance measurements. From the simulation, the geometry
seems to not have a significant impact on the performance.
Future work will include developing a system for experimental
testing and investigating strategies for reducing the uncertainty
in the estimation algorithm.
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