
Instructor: Yu Gu, Fall 2013

MAE 493G, CpE 493M, Mobile Robotics

8. Introduction to Kalman Filter

http://www2.statler.wvu.edu/~irl/

Kalman Filter

2

• The Kalman filter operates recursively

on streams of noisy input data to produce

a statistically optimal estimate of the

underlying system state;

• Remember the question we had earlier

about how to do the average if the

measured parameter is time-varying?

• Kalman filter gives us the answer if you can formulate the time-varying

parameter that you want to measure as a state of a dynamic system, which

usually is not too difficult;

• Kalman filter is rooted from both optimal control and the Bayers’ rule.

Conceptually, it is about how to make a series of (educated) guesses based

on both priori knowledge and current observation (Bayesian). It’s optimal

in the sense that it minimizes the mean square error;

• Kalman filter is widely used in navigation, object tracking, stock analysis,

etc...

The Basic Idea

3

• Assuming that you are on the

way to New York City;

• You have been there before and

you kind of know how long

you have to drive on each

segment of the road;

• As you drive, you have a

rough idea of where you at

based on the time of travel;

• You also have a GPS unit,

which is also not very trustable,

because the map hasn’t been updated for a few years;

• So, how do you combine the information from these two sources?

Driver

GPS

Combined

Estimation

Simple answer: use a weighted average of the two information.

However, we need to figure out to how to calculate the weights...

Propagating Statistics Through

Linear Functions

4

• For independent random variables X, Y, and constants a, b, and c:

• If X, and Y are not independent:

• For two n×1 random vectors X and Y that are independent from each other,

n×n constant matrices A, B, and n×1 constant vector C:

• With these equations, we can predict the mean and variance (covariance) of

random variables after transforming them through linear equations. The next

step is to find these equations for specific engineering problems;

• A Gaussian distribution will still be Gaussian after a linear transformation.

() () ()E aX bY c aE X bE Y c    

2 2var() var() var() 0aX bY c a X b Y    

2 2var() var() var() 2 cov(,)aX bY c a X b Y ab X Y     

cov(C) cov() cov()T T   AX BY A X A B Y B

(C) () () CE E E    AX BY A X B Y

State Space Representation

5

• In engineering, the mathematical model of a physical process is often

described as differential equations. For example: position P is the second

derivation of acceleration a:

• A state space representation is a mathematical model of a physical system

as a set of input, output and state variables related by first-order

differential equations;

• The inputs u, outputs y, and states x are expressed as vectors. If the

dynamical system is linear, the differential and algebraic equations may

be written in matrix form;

• "State Space" refers to the space whose axes are the state variables. The

state of the system can be represented as a vector within that space.

• An intuitive example is the x, y, and z position of a robot.

• State-space model creates a convenient platform for solving Multiple-

Input-Multiple-Output (MIMO) problems.

P a

State Space (Cont.)

6

• Continuous-time linear time invariant:

• Discrete-time linear time invariant:

• Where x is a n×1 state vector; y is a q×1 output vector, u is a p×1 input

vector, A is a n×n state transition matrix, B is a n×p state input matrix, C

is a q×n state output matrix, and D is a q×p feed-through matrix.

• The state space model does not have to be linear. For the nonlinear case,

the relationships are just

not in a matrix form; e.g.

for continuous-time:

() () ()

() () ()

t t t

t t t

 

 

x Ax Bu

y Cx Du

(1) () ()

() () ()

k k k

k k k

  

 

x Ax Bu

y Cx Du

x x

 

 

() , (), ()

() , (), ()

t f t t t

t h t t t





x x u

y x u

State Space Example

7

• For the one-dimensional navigation problem we talked about earlier:

We can breakdown this second order differential equation to two first

order differential equations: , and where V is the velocity.

• Let’s define the state vector as: and the input as

• Assume we also have a measurement of the position:

• We can have a continuous time state-space formulation as:

• There are many tools to help us to understand systems like this;

• Keep in mind if a and Pmeasure are provided by sensors, we will need add

noises into the equations above.

P a

P V V a

1

2

x P

x V

   
    

  
x u a

measurey P

1 1

2 2

0 1 0

0 0 1

x x
u

x x

      
          

      
x Ax Bu

  1

2

1 0
x

x

 
    

 
y Cx Du

Process and Measurement Noise

8

• Given the state space models we have seen so far, noises or uncertainties can

show up at two places (at least):

• We call w process noise and v measurement noise. We assume they are both

white and Gaussian, with

• Here N stands for normal distribution, the zeros are the means and Q and R

are covariance matrices;

• If w and v are time varying, then Q and R will be time varying as well;

• Measurement noise is easy to understand and easy to quantify;

• Process noise captures the uncertainties in the mathematical model, the

parameters, the disturbance on the system, and the noises in the input signal;

• The property of the process noise is sometime tricky to determine due to

multiple contributing factors.

() () () ()

() () () ()

t t t t

t t t t

  

  

x Ax Bu w

y Cx Du v

(1) () () ()

() () () ()

k k k t

k k k t

   

  

x Ax Bu w

y Cx Du v

   () 0, () , () 0, ()t N t t N tw Q v R

Discretization

9

• Our computer does not run in continuous time so often we need to discretize

our models before running a computer simulation.

• Starting from a continues time state-space model:

 Where, w and v are Gaussian white noise with parameters:

• It can be discretized to the following model:

with

• If the sampling time is Ts, Ad, Bd, Cd, Dd and Rd can be (approximately)

calculated with:

 Where I is the identity matrix;

• The calculation of Qd is trickier, but we won’t need to do it most of the time.

() () () ()

() () () ()

t t t t

t t t t

  

  

x Ax Bu w

y Cx Du v

(1) () () ()

() () () ()

d d d

d d d

k k k k

k k k k

   

  

x A x B u w

y C x D u v   () 0, () , () 0, ()d d d dk N k k N kw Q v R

, , , ,d s d s d d dT T     A I A B B C C D D R R

   () 0, () , () 0, ()t N t t N tw Q v R

1D Navigation Example

10

• For the continuous-time equation we had earlier, let’s add in some

uncertainties:

• We assume here the only uncertainties are introduced by the acceleration

measurement noise and position measurement noise

• The discretized system is:

• The noise properties: and can be acquired by

analyzing the collected sensor data.

• If we consider the total process noise: , then

 1

2

()0 1 0
() () () () ()

()0 0 1
a

x t
t t t u t w t

x t

    
        

    
x Ax Bu

  1

2

()
() () () 1 0 ()

()
P

x t
t t t v t

x t

 
    

 
y Cx Du

2(0,)a aw N  2(0,)P Pv N 

 1

2

0()1
(1) () () () ()

()0 1

s

da

s

x kT
k k k u k w k

Tx k

   
        

     
x Ax Bu

  1

2

()
() () () 1 0 ()

()
dP

x k
k k k v k

x k

 
    

 
y Cx Du

2(0,)da daw N 
2(0,)dP dPv N 

d s daw T w 2 2(0,)d s daw N T 

Kalman Filter

11

• A Kalman filter is a recursive estimator that is based on linear dynamic

systems discretized in the time domain:

• Note that we have a slight change of notation here to make things a

little less cluttered...

• The process and measurement noises are assumed to be independent

from each other, white, and Gaussian, with

• Instead of only propagating the states through the system dynamics, we

will propagate the distribution of our estimates;

• This include the state (the expected value of the estimated distribution)

and the covariance matrix (the confidence about the estimate).

Remember? the Gaussian distribution can be fully described through

these two (set of) parameters!

• This process takes two main steps: prediction and update.

1 1 1k k k k k k

k k k k

    

 

x A x B u w

y C x v

(0,), (0,)k k k kN Nw Q v R

Prediction (in Time)

12

• Starting from the estimated state (the expected value of a distribution)

and covariance (the confidence level) from the previous time step

(k-1), let’s propagate these statistics through the linear system

(difference) equations:

• We call and a priori (with out seeing the measurement at time k

yet!) state estimate and estimation error covariance;

• Remember a multivariate Gaussian distribution will remain Gaussian

after a linear transformation? Only with different mean and covariance.

• We basically predicted what the distribution may look like using prior

knowledge (system equation and property of the noises)

| 1 1| 1

T

k k k k k k k   P A P A Q

| 1
ˆ

k kx | 1k kP

1| 1
ˆ

k k x

1| 1k k P

| 1 1| 1 1
ˆ ˆ

k k k k k k k    x A x B u

Prediction
1| 1

ˆ
k k x | 1

ˆ
k kx

1| 1k k P | 1k kP1 1 1k k k k k k    x A x B u w

Measurement Update

13

• However, we don’t live in a perfect world and predictions are not always

true...the good news is that we are also performing (noise corrupted...)

measurements! Now we have two sources of information but which one to

trust?

• The difference between measurement and predication is called innovation or

residual: and we can also find out it’s covariance with:

• The rest is to update our distribution:

Posterior estimate:

Posterior error covariance:

• Where is the optimal

Kalman gain, which can be seeing as

a time-varying weighting factor

between prediction and measurements.

1

| 1

T

k k k k k



K P C S

| 1
ˆ

k k k k k r y C x

| 1

T

k k k k k k S C P C R

| | 1
ˆ ˆ

k k k k k k x x K r

| | 1()k k k k k k P I K C P

|
ˆ

k kx| 1
ˆ

k kx

|k kP

ky

| 1k kP kR

Putting it Together

14

| 1 1| 1 1
ˆ ˆ

k k k k k k k    x A x B u

| 1 1| 1

T

k k k k k k k   P A P A Q

 | | 1 | 1
ˆ ˆ ˆ

k k k k k k k k k   x x K y C x

| | 1()k k k k k k P I K C P

 
1

| 1 | 1

T T

k k k k k k k k k



  K P C C P C R

Predication Update

It only takes five equations to have a Kalman filter!

1D KF Example for Navigation

15

• Let’s figure out the one dimensional position of a robot from two

measurements. The first one is a direct GPS position measurement,

which is assumed to have a white and Gaussian noise with zero mean

and standard deviation of 2m. The second measurement is from the

accelerometer, which is assumed to have a white and Gaussian noise

with zero mean and standard deviation of 0.1m/s2. The sampling rate is

10Hz. Our goal here is to estimate the robot position.

• We already have the state-space model from the previous discussions:

• Now we have some assumption of the noises:

• Let’s assume the initial conditions are (could be better or worse):

 
01

0 1

ks

k k a

k s

PT
a w

V T

    
      
     

x  1 0
k

k P

k

P
v

V

 
  

 
y

2(0,0.01), (0,0.01), (0,4)a a s s PN T N T N  w w w v

0 0

10 1 0
,

2 0 1
P

   
    
   

x

1D KF for Navigation (Cont.)

16

• The first step is to simulate the system without uncertainty and then add

noises to the measurements:

Ts=0.1; % Sampling time

N=1000; % Total steps of simulation

Time=zeros(N,1); % The time vector

Position_T = zeros(N,1); % The truth for position

Velocity_T = 2*ones(N,1); % The truth for velocity

Acceleration_T=zeros(N,1); % The truth for acceleration

Position_M=zeros(N,1); % The measured position

Acceleration_M=zeros(N,1); % The measured acceleration

Position_E=zeros(N,1); % The estimated position

Velocity_E=zeros(N,1); % The estimated velocity

%% Generate the Truth Data and the Simulated Measurements

for k=1:N

 Time(k)=k*Ts;

 Acceleration_T(k)=-sin(Time(k)/2); % Start with the acceleration

 if k>1

 Velocity_T(k)=Velocity_T(k-1)+Acceleration_T(k)*Ts;

 Position_T(k)=Position_T(k-1)+Velocity_T(k)*Ts;

 end

 Position_M(k)=Position_T(k)+normrnd(0,2);

 Acceleration_M(k)=Acceleration_T(k)+normrnd(0,0.1);

end

1D KF for Navigation (Cont.)

17

0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time(s)

m
/s

2
;

m
/s

;
m

The Truth and Measured Data for the Robot Motion

Ture Acceleratoin

Measured Acceleratoin

True Velocity

True Position

Measured Position

1D KF for Navigation (Cont.)

18

0 20 40 60 80 100
-10

-5

0

5

10

15

20

25

30

35

Time(s)

P
o
s
it

io
n

(m
)

The Ture, Measured, and Dead Reckoning Estimation of Position

Position Truth

Position Measurement

Dead Reckoning

1D KF for Navigation (Cont.)

19

• Now the Kalman Filter Part:

%Initialization for the KF

A=[1 Ts

 0 1]; % State Transition Matrix

B=Ts*[0 1]'; % Input Matrix

C=[1 0]; % Measurement Matirix

Q=[0 0

 0 0.01]*Ts^2; % Process noise covariance

R= 4; % Measurement noise variance

I=eye(2); % Identity matrix

x_P=[10 2]'; % Initial estimate of the states

Position_E(1)=x_P(1);

Velocity_E(1)=x_P(2);

P_P=eye(2); % Initial estimated error covariance

for k=2:N

 x_A=A*x_P+B*Acceleration_M(k); % calculate the a priori states

 P_A=A*P_P*A'+Q; % calculate the a priori error covariance

 K_k=P_A*C'*inv(C*P_A*C'+R); % calculate the Kalman gain

 x_P=x_A+K_k*(Position_M(k)-C*x_A);% calculate the posterior states

 P_P=(I-K_k*C)*P_A; % calculate the posterior error covariance

 % Get the states for plotting

 Position_E(k)=x_P(1);

 Velocity_E(k)=x_P(2);

end

1D KF for Navigation (Cont.)

20

0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time(s)

P
o
s
it

io
n

(m
)

The Ture, Measured, and Kalman Filter Estimated Position

Position Truth

Position Measurement

Position Estimation

1D KF for Navigation (Cont.)

21

0 20 40 60 80 100
-2

0

2

4

6

8

10
Position Estimation Error

Time(s)

E
rr

o
r(

m
)

Implementation Issues

22

• Initial values of the state x0 and error covariance P0: the better your

initial guess is, the quicker the Kalman filter will converge!

• Process noise: process noise covariance matrix Q is often hard to

determine;

• Tuning can be used, especially if you can not find the right value of Q

intuitively. Once you start tuning the filter, Q and R will start to lose

their meaning as covariance matrices; they become tuning knobs...

• The higher the Q (with respect to R) value is, the more the filter will

trust the measurement;

• The higher the R value is, the more the filter will trust the prediction;

• We can see the examples in the next page.

Kalman Filter Tuning

23

• The same filter that we had earlier but with different Q and R:

0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time(s)

P
o
s
it

io
n

(m
)

The Ture, Measured, and Kalman Filter Estimated Position

Position Truth

Position Measurement

Position Estimation

0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time(s)

P
o
s
it

io
n

(m
)

The Ture, Measured, and Kalman Filter Estimated Position

Position Truth

Position Measurement

Position Estimation

1000new old

new old





Q Q

R R 1000

new old

new old





Q Q

R R

Nonlinear Kalman Filter

24

• If the dynamic system or the measurement equation is nonlinear (which

is the case most of the time), things can get much harder;

• It’s no longer easy to calculate the mean and covariance after

transforming a random distribution through a nonlinear function;

• A Gaussian distribution may no longer be Gaussian after a nonlinear

transformation as well;

• But for cases with relatively

benign nonlinearity, we can

make some simplifications;

• For example, we can try to

linearize a nonlinear problem

and then solve the linearized

system with linear tools (works

most of the time!).

Linearization

25

• Linearization finds the linear approximation to a nonlinear function at a

given point;

• Linearization makes it possible to use tools for studying linear systems to

analyze the behavior of a nonlinear function near a given point;

• The linearization of a function is the first order term of its Taylor expansion

around the point of interest;

• For a system defined by the equation: , it can be linearized around

point x0 as:

• DF(x0,t) is the Jacobian matrix of F(x,t) evaluated at x0;

• Jacobian matrix is the matrix of all first-order

partial derivatives of a vector-valued function.

• Suppose F: Rn→Rm has m real-valued

component functions:

the Jocobian J can be calculated with:

(,)F tx x

0 0 0(,) (,) ()F t DF t   x x x x x

1 1 1(,...,),..., (,...,)n m nF x x F x x

1 1

1

1

n

m m

n

F F

x x

F F

x x

  
  
 

  
  
 
   

J

Extended Kalman Filter

26

• The Extended Kalman Filter (EKF) is an nonlinear descendent of the

Kalman filter, which linearizes about an estimate of the current mean;

• For the following nonlinear state transition and observation functions:

• The function f can be used to compute the predicted state from the

previous estimate and similarly the function h can be used to compute

the predicted measurement from the predicted state. However, f and h

cannot be applied to the calculation of covariance directly. Instead the

Jacobian matrices are computed;

• At each time step, the Jacobian is evaluated with current predicted

states. These matrices can be used in the Kalman filter equations. This

process essentially linearizes the non-linear function around the current

estimate.

 

 

1 1 1,k k k k

k k k

f

h

   

 

x x u w

y x v

EKF Equations

27

EKF KF

 

 

1 1 1,k k k k

k k k

f

h

   

 

x x u w

y x v
Models:

1 1 1k k k k k k

k k k k

    

 

x A x B u w

y C x v

| 1 1| 1 1
ˆ ˆ

k k k k k k k    x A x B u

| 1 1| 1

T

k k k k k k k   P A P A Q

| 1

T

k k k k k k S C P C R

| 1
ˆ

k k k k k r y C x

| | 1
ˆ ˆ

k k k k k k x x K r

| | 1()k k k k k k P I K C P

1

| 1

T

k k k k k



K P C S

Predict:

Update:

Predicted State Estimate:

Predicted Error Covariance:

| 1 1| 1 1
ˆ ˆ(,)k k k k kf   x x u

| 1 1 1| 1 1

T

k k k k k k k     P PF QF

Innovation or Residual:

Innovation Covariance:

 | 1
ˆ

k k k kh  r y x

| 1

T

k k k k k k S P H RH

Kalman Gain:

Posterior State Estimate:

1

| 1

T

k k k k k



 HK P S

| | 1
ˆ ˆ

k k k k k k x x K r

Posterior Error Covariance:
| | 1()k k k k k k P I K PH

1| 1 1

1

ˆ ,k k k

k

f

x
  





 x u

F

| 1ˆ k k

k

h

x




 x

HJacobian Matrices:

A Simple Pendulum w/ Friction

28

• A simple unforced pendulum can be modeled as:

• Where is the angle of the pendulum with respect to the direction of

gravity; m=1kg is the mass of the pendulum (pendulum rod's mass is

assumed to be zero); g is the gravitational acceleration; c=0.5 is coefficient

of friction at the pivot point, and l=0.5m is the radius of the pendulum (to

the center of gravity of the mass m);

• If we define ,we will have the following relationships:

• The state space representation is then:

• If we measure the horizontal distance d between the pendulum and the

vertical line through the pivot point, we will have a nonlinear measurement

equation as well:

 2 () sin () ()ml t mg t l cl t    

 

2

1 2

()
sin

c

x

f g c
x x

l m

 
  
  
 

x x

()t

1 2() (), () ()x t t x t t  

 1 2 2 1 2() (), () () sin () ()
g c

x t x t x t t x t x t
l m

    

 1() sin sinch l l x  y x

Simple Pendulum (Cont.)

29

• Discretize the state transition and measurement equations, we have:

• Calculating the Jacobians:

• Let’s assume the process and measurement noises are independent from each

other, white, and Gaussian, with:

• Rewrite the state space models with noises:

 
1

1

1

1

cos (1) 1
k

s

k

s s

T
f

g c
x T x k T

l m



 
   

    
 

x

F

 1

ˆ

cos () 0

k

k

h
l x k

x


     x

H

 

1 2

2 1 2

(1) (1)

() ()
(1) sin (1) (1)

s

d

s s

x k T x k

k f g c
x k T x k T x k

l m

   
  
     
 

x x

 1() () sin ()dk h l x k y x

(0,), (0,),N Nw Q v R

() ()

() ()

d

d

k f

k h

 

 

x x w

y x v

0.0001 0
,

0 0.0001

 
  
 

Q 0.25R

Simple Pendulum Simulation

30

• The true angle, angular rate, and the measured distance:

0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time(s)

ra
d
/s

;
ra

d
;

m
The Truth and Measured Data for the Pendulum

Ture Theta Dot

True Theta

Measured Distance

Simple Pendulum Estimation

31

0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time(s)

m
;

ra
d
;

ra
d

The Measured Distance, Ture Theta, and Kalman Filter Estimated Theta

Distance Measurement

Theta Truth

Theta Estimation

0 2 4 6 8 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Theta Estimation Error

Time(s)

E
rr

o
r(

ra
d

)

• Initial Conditions:

• EKF is not guaranteed to be stable! Sometimes if there is too much

nonlinearity in the system, the error assumptions are wrong, or the initial

guess is way off, the EKF may diverge!

• EKF is not a optimal state estimator as well.

1 21.6rad, 0.0rad/sx x 

Kalman Filter Reviewed

32

• (Linear) Kalman Filter is a optimal recursive stochastic state estimator that

works with a linear dynamic system with the process and measurement

noises assumed to be independent from each other, white, and Gaussian.

• Now we know how to average out errors if the measured

parameter is time-varying;

• This is achieved through a clever use of prior knowledge,

such as system dynamic equations (model of the system)

and sensor noise statistics (stochastic model of sensor

error);

• EKF allows us to tackle nonlinear problems but with some

penalty (added computation requirement, lost optimality,

and stability issues sometimes);

• EKF is a standard tool for robot, aircraft, and spacecraft

navigation.

Summary

33

• An Introduction to the Kalman Filter,

http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

• Search Wikipedia for keywords: ‘State Space

Representation’, ‘Discretization’, ‘Linearization’, ‘Kalman

Filter’, and ‘Extended Kalman Filter’.

Further Reading

34

http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

