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Kalman Filter 
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• The Kalman filter operates recursively  

on streams of noisy input data to produce  

a statistically optimal estimate of the  

underlying system state; 

• Remember the question we had earlier  

about how to do the average if the  

measured parameter is time-varying? 

• Kalman filter gives us the answer if you can formulate the time-varying 

parameter that you want to measure as a state of a dynamic system, which 

usually is not too difficult; 

• Kalman filter is rooted from both optimal control and the Bayers’ rule. 

Conceptually, it is about how to make a series of (educated) guesses based 

on both priori knowledge and current observation (Bayesian). It’s optimal 

in the sense that it minimizes the mean square error; 

• Kalman filter is widely used in navigation, object tracking, stock analysis, 

etc... 



The Basic Idea 
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• Assuming that you are on the  

way to New York City; 

• You have been there before and 

you kind of know how long 

you have to drive on each  

segment of the road; 

• As you drive, you have a  

rough idea of where you at 

based on the time of travel; 

• You also have a GPS unit,  

which is also not very trustable,  

because the map hasn’t been updated for a few years; 

• So, how do you combine the information from these  two sources? 

Driver 

GPS 

Combined 

Estimation 

Simple answer: use a weighted average of the two information. 

However, we need to figure out to how to calculate the weights...  



Propagating Statistics Through  

Linear Functions  

4 

• For independent random variables X, Y, and constants a, b, and c: 

 

 

• If X, and Y are not independent: 

 

• For two n×1 random vectors X and Y that are independent from each other, 

n×n constant matrices A, B, and n×1 constant vector C:  

 

 

• With these equations, we can predict the mean and variance (covariance) of 

random variables after transforming them through linear equations. The next 

step is to find these equations for specific engineering problems; 

• A Gaussian distribution will still be Gaussian after a linear transformation. 
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State Space Representation 
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• In engineering, the mathematical model of a physical process is often 

described as differential equations. For example: position P is the second 

derivation of acceleration a: 

• A state space representation is a mathematical model of a physical system 

as a set of input, output and state variables related by first-order 

differential equations; 

• The inputs u, outputs y, and states x are expressed as vectors. If the 

dynamical system is linear, the differential and algebraic equations may 

be written in matrix form; 

•  "State Space" refers to the space whose axes are the state variables. The 

state of the system can be represented as a vector within that space.  

• An intuitive example is the x, y, and z position of a robot. 

• State-space model creates a convenient platform for solving Multiple-

Input-Multiple-Output (MIMO) problems.   

P a



State Space (Cont.) 
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• Continuous-time linear time invariant: 

 

• Discrete-time linear time invariant: 

• Where x is a n×1 state vector; y is a q×1 output vector, u is a p×1 input 

vector, A is a n×n state transition matrix, B is a n×p state input matrix, C 

is a q×n state output matrix, and D is a q×p feed-through matrix. 

• The state space model does not have to be linear. For the nonlinear case, 

the relationships are just  

not in a matrix form; e.g.  

for continuous-time: 
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State Space Example 
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• For the one-dimensional navigation problem we talked about earlier: 

We can breakdown this second order differential equation to two first 

order differential equations:          , and          where V is the velocity. 

• Let’s define the state vector as:                        and the input as 

• Assume we also have a measurement of the position: 

• We can have a continuous time state-space formulation as:   

 

 

 

• There are many tools to help us to understand systems like this; 

• Keep in mind if a and Pmeasure are provided by sensors, we will need add 

noises into the equations above.  
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Process and Measurement Noise 
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• Given the state space models we have seen so far, noises or uncertainties can 

show up at two places (at least):  

 

 

• We call w process noise and v measurement noise. We assume they are both 

white and Gaussian, with 

• Here N stands for normal distribution, the zeros are the means and Q and R 

are covariance matrices;  

• If w and v are time varying, then Q and R will be time varying as well; 

• Measurement noise is easy to understand and easy to quantify; 

• Process noise captures the uncertainties in the mathematical model, the 

parameters, the disturbance on the system, and the noises in the input signal; 

• The property of the process noise is sometime tricky to determine due to 

multiple contributing factors. 
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Discretization 

9 

• Our computer does not run in continuous time so often we need to discretize 

our models before running a computer simulation.  

• Starting from a continues time state-space model: 

 

 Where, w and v are Gaussian white noise with parameters:  

 

• It can be discretized to the following model: 

with  

• If the sampling time is Ts, Ad, Bd, Cd, Dd and Rd can be (approximately) 

calculated with: 

 Where I is the identity matrix; 

• The calculation of Qd is trickier, but we won’t need to do it most of the time.  
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1D Navigation Example 
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• For the continuous-time equation we had earlier, let’s add in some 

uncertainties: 

 

 

• We assume here the only uncertainties are introduced by the acceleration 

measurement noise   and position measurement noise 

• The discretized system is: 

 

 

 

• The noise properties:                       and                       can be acquired by 

analyzing the collected sensor data. 

• If we consider the total process noise:                 , then     
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Kalman Filter 
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• A Kalman filter is a recursive estimator that is based on linear dynamic 

systems discretized in the time domain: 

• Note that we have a slight change of notation here to make things a 

little less cluttered... 

• The process and measurement noises are assumed to be independent 

from each other, white, and Gaussian, with 

• Instead of only propagating the states through the system dynamics, we 

will propagate the distribution of our estimates; 

• This include the state (the expected value of the estimated distribution) 

and the covariance matrix (the confidence about the estimate). 

Remember? the Gaussian distribution can be fully described through 

these two (set of) parameters!   

• This process takes two main steps: prediction and update. 
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    

 

x A x B u w

y C x v

(0, ), (0, )k k k kN Nw Q v R



Prediction (in Time) 
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• Starting from the estimated state (the expected value of a distribution)           

and covariance (the confidence level)           from the previous time step 

(k-1), let’s propagate these statistics through the linear system 

(difference) equations: 

 

• We call        and         a priori (with out seeing the measurement at time k 

yet!) state estimate and estimation error covariance; 

• Remember a multivariate Gaussian distribution will remain Gaussian 

after a linear transformation? Only with different mean and covariance. 

• We basically predicted what the distribution may look like using prior 

knowledge (system equation and property of the noises) 
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Measurement Update 
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• However, we don’t live in a perfect world and predictions are not always 

true...the good news is that we are also performing (noise corrupted...) 

measurements! Now we have two sources of information but which one to 

trust? 

• The difference between measurement and predication is called innovation or 

residual:                          and we can also find out it’s covariance with: 

• The rest is to update our distribution:    

Posterior estimate: 

Posterior error covariance: 

 

• Where              is the optimal  

Kalman gain, which can be seeing as  

a time-varying weighting factor  

between prediction and measurements. 
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Putting it Together 
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It only takes five equations to have a Kalman filter!  



1D KF Example for Navigation 
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• Let’s figure out the one dimensional position of a robot from two 

measurements. The first one is a direct GPS position measurement, 

which is assumed to have a white and Gaussian noise with zero mean 

and standard deviation of 2m. The second measurement is from the 

accelerometer, which is assumed to have a white and Gaussian noise 

with zero mean and standard deviation of 0.1m/s2. The sampling rate is 

10Hz. Our goal here is to estimate the robot position. 

• We already have the state-space model from the previous discussions: 

 

• Now we have some assumption of the noises:  

 

• Let’s assume the initial conditions are (could be better or worse): 
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1D KF for Navigation (Cont.) 
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• The first step is to simulate the system without uncertainty and then add 

noises to the measurements:  

Ts=0.1;                                         % Sampling time 

N=1000;                                         % Total steps of simulation 

Time=zeros(N,1);                                % The time vector 

Position_T = zeros(N,1);                        % The truth for position 

Velocity_T = 2*ones(N,1);                       % The truth for velocity 

Acceleration_T=zeros(N,1);                      % The truth for acceleration  

Position_M=zeros(N,1);                          % The measured position 

Acceleration_M=zeros(N,1);                      % The measured acceleration 

Position_E=zeros(N,1);                          % The estimated position 

Velocity_E=zeros(N,1);                          % The estimated velocity 

  

%% Generate the Truth Data and the Simulated Measurements 

for k=1:N 

    Time(k)=k*Ts; 

    Acceleration_T(k)=-sin(Time(k)/2);          % Start with the acceleration 

    if k>1 

        Velocity_T(k)=Velocity_T(k-1)+Acceleration_T(k)*Ts; 

        Position_T(k)=Position_T(k-1)+Velocity_T(k)*Ts; 

    end 

    Position_M(k)=Position_T(k)+normrnd(0,2); 

    Acceleration_M(k)=Acceleration_T(k)+normrnd(0,0.1); 

end 



1D KF for Navigation (Cont.) 
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1D KF for Navigation (Cont.) 
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1D KF for Navigation (Cont.) 
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• Now the Kalman Filter Part: 

%Initialization for the KF 

A=[1   Ts 

   0   1];                                  % State Transition Matrix 

B=Ts*[0 1]';                                % Input Matrix 

C=[1 0];                                    % Measurement Matirix 

Q=[0   0 

   0   0.01]*Ts^2;                          % Process noise covariance       

R= 4;                                       % Measurement noise variance 

I=eye(2);                                   % Identity matrix 

x_P=[10 2]';                                % Initial estimate of the states 

Position_E(1)=x_P(1); 

Velocity_E(1)=x_P(2); 

P_P=eye(2);                              % Initial estimated error covariance 

for k=2:N 

    x_A=A*x_P+B*Acceleration_M(k);       % calculate the a priori states 

    P_A=A*P_P*A'+Q;                 % calculate the a priori error covariance 

    K_k=P_A*C'*inv(C*P_A*C'+R);     % calculate the Kalman gain 

    x_P=x_A+K_k*(Position_M(k)-C*x_A);% calculate the posterior states 

    P_P=(I-K_k*C)*P_A;             % calculate the posterior error covariance 

    % Get the states for plotting 

    Position_E(k)=x_P(1); 

    Velocity_E(k)=x_P(2); 

end 



1D KF for Navigation (Cont.) 
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1D KF for Navigation (Cont.) 
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Implementation Issues 
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• Initial values of the state x0 and error covariance P0: the better your 

initial guess is, the quicker the Kalman filter will converge! 

• Process noise: process noise covariance matrix Q is often hard to 

determine; 

• Tuning can be used, especially if you can not find the right value of Q 

intuitively. Once you start tuning the filter, Q and R will start to lose 

their meaning as covariance matrices; they become tuning knobs... 

• The higher the Q (with respect to R) value is, the more the filter will 

trust the measurement; 

• The higher the R value is, the more the filter will trust the prediction; 

• We can see the examples in the next page. 



Kalman Filter Tuning 
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• The same filter that we had earlier but with different Q and R: 

0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time(s)

P
o
s
it

io
n

(m
)

The Ture, Measured, and Kalman Filter Estimated Position

 

 

Position Truth

Position Measurement

Position Estimation

0 20 40 60 80 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time(s)

P
o
s
it

io
n

(m
)

The Ture, Measured, and Kalman Filter Estimated Position

 

 

Position Truth

Position Measurement

Position Estimation

1000new old

new old





Q Q

R R 1000

new old

new old





Q Q

R R



Nonlinear Kalman Filter 
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• If the dynamic system or the measurement equation is nonlinear (which 

is the case most of the time), things can get much harder; 

• It’s no longer easy to calculate the mean and covariance after 

transforming a random distribution through a nonlinear function; 

• A Gaussian distribution may no longer be Gaussian after a nonlinear 

transformation as well; 

• But for cases with relatively  

benign nonlinearity, we can  

make some simplifications; 

• For example, we can try to  

linearize a nonlinear problem  

and then solve the linearized 

system with linear tools (works  

most of the time!). 

 



Linearization 
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• Linearization finds the linear approximation to a nonlinear function at a 

given point; 

• Linearization makes it possible to use tools for studying linear systems to 

analyze the behavior of a nonlinear function near a given point; 

• The linearization of a function is the first order term of its Taylor expansion 

around the point of interest; 

• For a system defined by the equation:                 , it can be linearized around 

point x0 as: 

• DF(x0,t) is the  Jacobian matrix of F(x,t) evaluated at x0; 

• Jacobian matrix is the matrix of all first-order  

partial derivatives of a vector-valued function.  

• Suppose F: Rn→Rm has m real-valued  

component functions: 

the Jocobian J can be calculated with:  
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Extended Kalman Filter 
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• The Extended Kalman Filter (EKF) is an nonlinear descendent of the 

Kalman filter, which linearizes about an estimate of the current mean; 

• For the following nonlinear state transition and observation functions: 

 

• The function f can be used to compute the predicted state from the 

previous estimate and similarly the function h can be used to compute 

the predicted measurement from the predicted state. However, f and h 

cannot be applied to the calculation of covariance directly. Instead the 

Jacobian matrices are computed; 

• At each time step, the Jacobian is evaluated with current predicted 

states. These matrices can be used in the Kalman filter equations. This 

process essentially linearizes the non-linear function around the current 

estimate. 
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EKF Equations 
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EKF                                     KF         
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• A simple unforced pendulum can be modeled as: 

• Where        is the angle of the pendulum with respect to the direction of 

gravity; m=1kg is the mass of the pendulum (pendulum rod's mass is 

assumed to be zero); g is the gravitational acceleration; c=0.5 is coefficient 

of friction at the pivot point, and l=0.5m is the radius of the pendulum (to 

the center of gravity of the mass m); 

• If we define      ,we will have the following relationships:  

 

 

• The state space representation is then: 

• If we measure the horizontal distance d between the pendulum and the 

vertical line through the pivot point, we will have a nonlinear measurement 

equation as well:   
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• Discretize the state transition and measurement equations, we have: 

 

 

 

• Calculating the Jacobians: 

 

 

• Let’s assume the process and measurement noises are independent from each 

other, white, and Gaussian, with:  

 

• Rewrite the state space models with noises: 
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• The true angle, angular rate, and the measured distance: 
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• Initial Conditions: 

• EKF is not guaranteed to be stable! Sometimes if there is too much 

nonlinearity in the system, the error assumptions are wrong, or the initial 

guess is way off, the EKF may diverge! 

• EKF is not a optimal state estimator as well. 

1 21.6rad, 0.0rad/sx x 
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• (Linear) Kalman Filter is a optimal recursive stochastic state estimator that 

works with a linear dynamic system with the process and measurement 

noises assumed to be independent from each other, white, and Gaussian.  



• Now we know how to average out errors if the measured 

parameter is time-varying; 

• This is achieved through a clever use of prior knowledge, 

such as system dynamic equations (model of the system) 

and sensor noise statistics (stochastic model of sensor 

error); 

• EKF allows us to tackle nonlinear problems but with some 

penalty (added computation requirement, lost optimality, 

and stability issues sometimes); 

• EKF is a standard tool for robot, aircraft, and spacecraft 

navigation. 

Summary 
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• An Introduction to the Kalman Filter, 

http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf 

• Search Wikipedia for keywords: ‘State Space 

Representation’, ‘Discretization’, ‘Linearization’, ‘Kalman 

Filter’, and ‘Extended Kalman Filter’. 
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http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

