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Navigation 
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• A fundamental issue for any mobile robot is to figure out 

where it is at in its environment; 

• For an outdoor robot, GPS makes navigation problem very 

easy; 

• There are also indoor positioning systems to help determine 

a robot’s position; 

• Navigation in a general environment without using any 

man-made external aid is a very hard problem; 

• However, humans can do it quite easily; 

• Animals including humans are very good at relative 

navigation, but not global navigation.  



Coordinate Systems 
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• To tell someone where you are, you need first to specify the coordinate 

system; 

• A common global geographic coordinate system use latitude, longitude, and 

elevation to represent a position; 

• ECEF (Earth-Centered, Earth-Fixed), is a Cartesian coordinate system with 

the origin defined at the Earth’s center of mass. Its axes are aligned with the 

International Reference Pole (IRP) and  

International Reference Meridian (IRM) that are  

fixed with respect to the surface of the Earth; 

• If you don’t plan to travel for a long  

distance, the Local Tangent Plane  

(LTP) is easier to use; 

• It’s a Cartesian coordinate system with 

a local origin and the three axes typically  

pointing to North, East, and Down (NED). 

Down 



Robot Body Frame 
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• From a robot’s perspective, the body frame is carried by and stays fixed 

relative to the robot at all times; 

• All the robot sensors are typically aligned with the body frame; 

• For example with the IMU, we can measure ax, ay, az, p (roll rate), q (pitch 

rate), r (yaw rate), and Mx, My, Mz; 

• Often we are interested in knowing how 

to transform from the body frame  

to a more global (or local) inertial frame; 

• That is to determine from sensor  

measurements the state of the robot; 

• For an aircraft, we typically worries about 

6 degrees of freedom (DOF), which include  

3 translational and 3 rotational DOFs. 

• A ground robot typical only has 3 DOF (2 translational, 1 rotational).  
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Right Hand Rule Systems 
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• In addition to having the same coordinate system, we also need to 

maintain consistent conventions to be able to communicate effectively; 

• Right-hand rule is a common convention for vectors in 3 dimensions; 

• A different form of the right-hand rule, sometimes called the right-hand 

grip rule, is used when a vector (such as the Euler vector) must be 

defined to represent the rotation of a body; 

• We will use both right hand rules for our robots. 

 



2D Coordinate Transformation 
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• Giving a Cartesian coordinate system A, a point is represented by its 

coordinates (xA, yA) or as a vector:  

Where            are unit-vectors parallel to the axes; 

• Now we want to represent the same point in a coordinate system B, which is 

offset by (x, y) and rotated counter-clockwise by an angle θ; 

• To consider just rotation we create a new  

frame V whose axes are parallel to those 

of A but whose origin is the same as B; 

• The relationships between B & V are: 
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2D Transformation (Cont.) 
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• We can represent a point P with respect to B as: 

 

 

 

• Now we can describe how points are transformed  

from frame B to frame V, where        is called a rotation matrix. 
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Euler Angles 
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• Euler angles provide a way to represent the 3D orientation of an object 

using a combination of three rotations about different axes; 

• Euler’s rotation theorem states that any rotation can be considered as a 

sequence of rotations about different coordinate axes; 

• There are many ways to rotate the frames... The one we are going to use 

here is to rotate along the z-axis first to get the yaw angle ψ, then the y-

axis to get the pitch angle θ, then the x-axis to get the roll angle ϕ; 

• The complete rotation matrix for moving from the inertial frame to the 

body frame is given by: 

 

• All the individual rotation matrixes are 

provided in the next page.  
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http://www.chrobotics.com/library/understanding-euler-angles


Euler Angles (Cont.) 
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• The rotation matrix from the body frame to the inertial frame is given by: 

 

 

• Singularity or Gimbal lock occurs when the orientation of the sensor 

cannot be uniquely represented using Euler Angles;   

• In this case, when pitch equals to 90° we cannot really distinguish 

between yaw and roll angles.  

cos sin 0

( ) sin cos 0 ,

0 0 1

z

 

  

 
  
 
  

R

cos 0 sin

( ) 0 1 0 ,

sin 0 cos

y

 



 

 
 
 
  

R

1 0 0

( ) 0 cos sin

0 sin cos

x   

 

 
 
 

  

R

( , , )B

I

c c c s s

c s s c s c c s s s c s

s s c c s c s s c s c c

    

              

           

 
   
 

   

R

( , , ) ( ) ( ) ( )I

B z y x

c c c s s c s s s c c s

c s c c s s s c s s c s

s c s c c

           

                 

    

  
       
 
  

R R R R



3D Coordinate Transformation 
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• Just like the 2D case, we can transform a position from frame A to B through 

rotation and translation: 

 

• The rotation matrices are special in the sense that they are orthogonal 

matrices with determinant one: 

 

• When singularity is not acceptable,  

such as spacecraft navigation, other 

methods were developed to  

represent the vehicle orientation  

(e.g. quaternions). 
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Gambled Inertial Navigation  
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• In a gambled inertial navigation system,  

all sensors including accelerometers and  

gyroscopes, are mounted on a platform  

which is isolated from any external  

rotational motion; 

• The calculations are simple: everything  

are just based on straight integrations; 

• However, the mechanical system is complex and heavy. 

http://fourier.eng.hmc.edu/e80/inertialnavigation/node4.html


Strap-Down Inertial Navigation  
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• In strap-down systems the inertial sensors are mounted rigidly onto the 

vehicle’s body; 

• It’s a simpler system but with more computation requirements; 

• Also the navigation equations are now nonlinear (with all the sine and 

cosine functions needed for coordinate transformations). 

http://fourier.eng.hmc.edu/e80/inertialnavigation/node5.html


1D Dead Reckoning 
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• Dead reckoning is the process of estimating one’s current position based on 

a previously determined position and advancing that position based upon 

known or estimated speeds over elapsed time, and course (e.g. inertial or 

encoder navigation).  

• If we only have one degree of freedom motion, such as a train (translation) 

or a turn table (rotation), navigation is quite straight forward! 

• Translation:                       , depending on what sensor you have (wheel  

 

 encoder for V or accelerometer for a); 

• Rotation:            , where the angular rate r can be measured with a rate 

gyro; 

• Keep in mind that the integration process will accumulate errors over the 

time even if the sensor noise is zero mean (remember the random walk 

example earlier?); 

• Dead reckoning is subject to unbounded cumulative errors! 
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2D Strap-Down Inertial Navigation 
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• For a 2D (level) ground robot navigation problem, we have five states 

to estimate: (x, y, Vx, Vy, ψ); 

• Using inertial sensors, the first step is to figure out the robot yaw angle 

ψ using the yaw rate gyro measurement: 

• The second step is rotate the accelerometer measurements from the 

robot body frame to the inertial frame:   

 

 

• Then we can do the straight integration of accelerations to get the robot 

position in the inertial frame; 

• Writing in the state space form: 
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3D Strap-Down Inertial Navigation 
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• For a 3D navigation problem, we now have nine states to estimate: (x, 

y, z, Vx, Vy, Vz, ϕ, θ, ψ); 

• The idea is the same as the 2D navigation problem earlier: figure out 

the three Euler angles first, then rotate the accelerometer measurements 

to the inertial frame, then perform the double integration of 

accelerations to estimate the position; 

• The Euler angles can be calculated through integrating the rate gyro 

measurements: 

 

 

 

• As we can see there is a division by cos(θ) so singularity could be a real 

issue sometimes.    
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3D Inertial Navigation (Cont.) 
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• In state space form: 

 

 

 

 

 

 

 

• We can see that the position calculation is the secondary process of the 

angle and velocity calculation. The error will build up in this process so 

getting a good position estimation using only inertial sensors can be 

quite hard!  
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GPS/INS Sensor Fusion Example 

17 

• GPS and INS (Inertial Navigation System) are meant to work together! 

• GPS provides a statistically unbiased solution but could jump (high 

frequency noise) randomly around the true position; 

• INS provides a smooth solution (through the integration process) but 

will drift over the time (low frequency error); 

• Working together, the GPS/INS sensor fusion algorithm will smooth out 

the GPS jumps and stop the INS drift – best of both worlds!  

• To do this, we can directly use the strap-down inertial navigation 

equations in the previous page for prediction; 

• The input vector u will include all inertial measurements:   

 

• The update will be based on the GPS measurements of the first six 

states:  
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GPS/INS Sensor Fusion (Cont.) 
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• We don’t have a direct measurement of the three Euler angle states, but 

that’s not a problem; 

• These three angles have showed up in the velocity prediction equations 

so the update with the velocity measurement will also provide 

constraints on what the values of ϕ, θ, ψ can take;  

• The rest are just the standard EKF procedures: discretization, calculate 

Jacobians, determine the process and measure noise covariance 

matrices, then apply the EKF equations, and maybe some tuning... 

• There are also several other ways to perform the GPS/INS sensor 

fusion, which will not be discussed here;  

• GPS/INS sensor fusion algorithms are very popular in autonomous 

systems. 



GPS/INS Sensor Fusion Results 
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• Through this simple approach, we can achieved two goals: 

1. Smooth out noisy GPS measurements; 

2. Provide estimates of attitude angles that were not measured directly! 
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Tilt Sensing 
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• In addition to gyro integration, the robot orientation can also be 

determined by referencing some vectors of known directions; 

• Three commonly accessible vectors are from the  Earth’s gravitational 

field (measured using accelerometers), magnetic fields (measured using 

magnetometers), and rotation (measured using rate gyros);  

• The gravity vector is accessible everywhere and normally it cannot be 

interfered. It can be used to determine the roll and pitch angle for an 

object that is stationary or moving at a constant velocity: 

 

 

• Keep in mind that this method will not work if the robot is in 

acceleration!   

• We can get the heading angle with magnetometer readings, which has a 

lot of issues to be discussed next. 
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Magnetic Heading 
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• Pigeons, bats, and sea turtles all use magnetic  

information to find their way; 

• The angle of inclination of the geomagnetic  

field, δ, is measured downwards from horizontal and  

varies over the earth's surface; 

• It’s about 67° near Morgantown; 

• Assuming the magnetic north is the same as the  

geographic north and there are no hard or soft iron  

effects, which are not true, the magnetometer  

measurements are: 

 

• But we don’t care too much about δ, what’s more important is to figure out 

the magnetic heading in the horizontal plane; 
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Magnetic Heading (Cont.) 
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• With the angles ϕ and θ known from the accelerometers, the magnetometer 

readings can be de-rotated to correct for the sensor tilt: 

 

 

Where H is a horizontal frame pointing to the same heading as the robot. Its 

x and y components are: 

• Now we can solve for the heading angle: 

 

 

• We typically use the ATAN2 function (with output angle range -180° to 

180°) to solve for ϕ and ψ, and use the ATAN function (with output angle 

range -90° to 90°) to compute θ. 
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Magnetic Sensor Calibration 
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• In reality, the magnetometer data is corrupted by both hard iron and soft 

iron effects. The magnetometer measurements can be described as: 

 

 

• Where V is a vector of three hard iron offsets and W captures the soft iron 

effect which includes three rotation and three scaling parameters; 

• These parameters can be calibrated through rotating the robot to visit all 

different angles and then estimate the center position, the axes length, and 

the orientation of the generated  

ellipsoid; 

• Once calibrated, the output should 

be close to a perfect sphere and  

centers at (0, 0, 0).  
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http://www.honzinovo.cz/projects/heli/sensors/calibration/


SMART Robot Calibration 
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• Below is the calibration result for one of the SMART robot: 

 

 

 

 

 

 

• Since we use the magnetometer only for heading, the converted results is 

normalized to a total strength of one. The calibration parameters are: 
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SMART EKF Example 
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• The SMART robot also has a simple EKF for attitude estimation; 

• It uses the gyro integration functions for prediction:  

 

 

 

• The predicted Euler angles are then updated with estimates using the 

gravity vector and the magnetic vector:  
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SMART EKF: Practical Issues 
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• Several issues had to be consider for this EKF to work properly; 

• First, the initial gyro bias needs to be removed for a good dead reckoning 

performance; 

• Second, we should only update the ϕ and θ predictions if the robot is not 

accelerating too hard; The total acceleration is:  

• If it deviates too far from 1g, which only happens occasionally, the filter will 

rely only on  dead reckoning without getting an update; 

• Third, the magnetometer have to be calibrated for soft and hard iron effects; 

• Finally, even if fully calibrated, local magnetic field (caused by objects outside 

of the robot) will still affect the heading estimation;  

• So the total magnetic strength is also calculated and the update will stop if the 

magnetometers sense abnormal values; 

• Even with all these approaches, the filter still works the best without any iron 

objects around the robot... 
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Robot Dynamics and Kinematics 
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• Robot dynamics is concerned with the effects of forces on 

the motion of the robot; 

• The robot kinematics is mathematics of motion without 

considering the forces that affect the motion; 

• If we are controlling a high speed robot or a walking robot, 

we may need to carefully model its dynamics to achieve the 

best performance or stability;  

• For a (low-performance) ground robot such as the Create, 

we typically don’t worry too much about dynamics; 

• However, we need to be familiar with the robot kinematics 

for navigation, planning, and position control applications. 



Kinematic Constraints 
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• A holonomic robot is one which is able to move instantaneously in any 

direction in the space of its degrees of freedom; 

• Most robots however cannot move that way... 

• For example, we can not directly drive sideways with our cars; 

• When we are planning the motion of a robot, we should take into account of 

these limitations; 

• From a positioning point of view, these constraints can sometime work to 

our favor! 

• Because we know the robot cannot be at  

certain places at certain time... 

• So that will limit the possible poses (position  

and orientation) the robot can be at any given 

time. 



Robot Kinematics – Steering 
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• A commonly used model for a four-wheeled car-like vehicle is the 

bicycle model; 

• The bicycle has a rear wheel fixed  

to the body and the plane of the  

front wheel rotates about the  

vertical axis to steer the vehicle; 

• The robot cannot move sideways: 

 

• The dashed lines show the direction 

along which the wheels cannot  

move, and these intersect at a point 

known as the Instantaneous Centre 

of Rotation (ICR) or Instantaneous 

Center of Curvature (ICC). 
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Steering (Cont.) 
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• The robot follows a circular path with center at ICR and angular velocity:   

 

• Where R1 is the turning radius, L is the length of the vehicle or wheel base, 

and γ is the steering angle; 

• The front wheel must follow a longer path than the back wheel: R2> R1; 

• The two steered wheels follow circular paths of different radius and therefore 

the angles of the steered wheels γL and γR should be very slightly different; 

• The velocity of the robot in the inertial frame is (Vcosθ, Vsinθ) so the 

equations of motion are: 

 

 

• When V is 0, the angle will not change, that is why cannot turn when the 

robot is not moving. 

1

tanV V

R L


  

cos

sin

tan

x V

y V

V L





 

   
   
   
      



Steering in Simulink 
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• The bicycle model can be easily simulated in Simulink: 

 

 

 

 

 

 

 

• This simulation is available in the Robotics  

Toolbox for MATLAB by Peter Corke;  

• Make sure you try it out! 
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Kinematics – Differential Drive 
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• If we define left and right wheel velocities along the ground VL and VR, 

the signed distance from the ICR to the midpoint between the wheels is 

R, and width between wheels is l. The rate of rotation ω about the ICR 

must be the same for both wheels: 

• Solving these equations, we get: 
 

• If Vl = Vr , the robot will drive straight forward; 

• If Vl = -Vr , the robot will turn on the  

spot; 

• Otherwise the center of the robot will 

both translate and rotate; 

• If Vl = 0, and Vr ≠ 0 the robot will  

rotate about the left wheel. 
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Kinematics Model in the Body Frame 
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• Solving the equations earlier, we can get: 

• In the body frame, we have the following relationships: 

 

 

• Where r is the wheel radius, ωl and ωr are the angular velocity of the 

left and right wheels; 

• This robot model is useful for robot velocity control; 

• The diameter of the wheels on Create  is ~6.5 cm and the distance 

(center to center) between the two wheels is ~26.3 cm; 
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Model in the Inertial Frame 

34 

• Forward kinematic model of the differential drive robot: 

• The location of the ICR is: 

• The forward kinematic model can be used for navigation; for example, 

we can do dead reckoning to find out the robot position based on wheel 

encoder readings; 

• The opposite side of the question is: How can we control the robot to 

reach a given configuration (also called pose) (x, y, θ) – this is known as 

the inverse kinematics problem; 

• Unfortunately, a differential drive robot has non-holonomic constraints 

so we cannot specify an arbitrary robot pose (position and orientation) 

and find the wheel velocities that will get us there; 

• Some motion planning is generally needed to drive from one pose to 

another. 
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Introduction to SLAM 
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• Simultaneous Localization and Mapping (SLAM) is a group of methods 

that solves the (chicken and egg) problem of how to determine a robot’s 

location in a map while building the map at the same time; 

• The solving of the SLAM problem was viewed as one of the major 

breakthroughs in robotics;  

• The idea is quite intuitive: when visiting a new place, we typically 

navigate around and get to know the place while keep tracking of our own 

location; 

• This can be done with a EKF (among many other algorithms) in a 

prediction and update framework: use dead reckoning (with encoders or 

inertial sensors) for the prediction of the robot pose, and use sensors (laser 

scanner or camera) to identify landmarks and update the robot pose and 

landmark positions simultaneously; 

• A YouTube video can be seen here. 

https://www.youtube.com/watch?v=zodC8EFvh7g


• How to get around in the environment without needing the help from an 

external positioning system is a great challenge in robotics; 

• Dead reckoning alone will always drift over the time; 

• Vectors of known directions, such as gravity and magnetic vectors, can be 

used to help figure out the robot orientation (under certain limitations); 

• Finding the robot position is in general a much hard problem than finding 

the robot orientation; 

• Sensor fusion, such as GPS/INS, can provide good navigation solutions 

with low-cost but complementary sensors; 

• SLAM is another sensor fusion algorithm that can help robots to navigate 

without the GPS; 

• The forward kinematics can be used for navigation and simulation, while 

the inverse kinematics can be used for robot motion control. 

Summary 
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• Our Textbook; 

• Differential Drive Robots, 

http://chess.eecs.berkeley.edu/eecs149/documentation/differentialDrive.pdf  

• Understanding Euler Angles, 

http://www.chrobotics.com/library/understanding-euler-angles 

• Implementing a Tilt-Compensated eCompass using Accelerometer and 

Magnetometer Sensors, 

http://freescale.com.hk/files/sensors/doc/app_note/AN4248.pdf   

• Calibrating an eCompass in the Presence of Hard and Soft-Iron 

Interference, 

http://www.freescale.com/files/sensors/doc/app_note/AN4246.pdf  

• Search Wikipedia for keywords ‘Inertial Navigation’, ‘Rotation Matrix’, 

‘Dead Reckoning’, and ‘SLAM’.  
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