
Instructor: Yu Gu, Fall 2013

MAE 493G, CpE 493M, Mobile Robotics

9. Navigation and Robot Kinematics

http://www2.statler.wvu.edu/~irl/

Navigation

2

• A fundamental issue for any mobile robot is to figure out

where it is at in its environment;

• For an outdoor robot, GPS makes navigation problem very

easy;

• There are also indoor positioning systems to help determine

a robot’s position;

• Navigation in a general environment without using any

man-made external aid is a very hard problem;

• However, humans can do it quite easily;

• Animals including humans are very good at relative

navigation, but not global navigation.

Coordinate Systems

3

• To tell someone where you are, you need first to specify the coordinate

system;

• A common global geographic coordinate system use latitude, longitude, and

elevation to represent a position;

• ECEF (Earth-Centered, Earth-Fixed), is a Cartesian coordinate system with

the origin defined at the Earth’s center of mass. Its axes are aligned with the

International Reference Pole (IRP) and

International Reference Meridian (IRM) that are

fixed with respect to the surface of the Earth;

• If you don’t plan to travel for a long

distance, the Local Tangent Plane

(LTP) is easier to use;

• It’s a Cartesian coordinate system with

a local origin and the three axes typically

pointing to North, East, and Down (NED).

Down

Robot Body Frame

4

• From a robot’s perspective, the body frame is carried by and stays fixed

relative to the robot at all times;

• All the robot sensors are typically aligned with the body frame;

• For example with the IMU, we can measure ax, ay, az, p (roll rate), q (pitch

rate), r (yaw rate), and Mx, My, Mz;

• Often we are interested in knowing how

to transform from the body frame

to a more global (or local) inertial frame;

• That is to determine from sensor

measurements the state of the robot;

• For an aircraft, we typically worries about

6 degrees of freedom (DOF), which include

3 translational and 3 rotational DOFs.

• A ground robot typical only has 3 DOF (2 translational, 1 rotational).

x

y

z

Roll

Pitch

Yaw

Right Hand Rule Systems

5

• In addition to having the same coordinate system, we also need to

maintain consistent conventions to be able to communicate effectively;

• Right-hand rule is a common convention for vectors in 3 dimensions;

• A different form of the right-hand rule, sometimes called the right-hand

grip rule, is used when a vector (such as the Euler vector) must be

defined to represent the rotation of a body;

• We will use both right hand rules for our robots.

2D Coordinate Transformation

6

• Giving a Cartesian coordinate system A, a point is represented by its

coordinates (xA, yA) or as a vector:

Where are unit-vectors parallel to the axes;

• Now we want to represent the same point in a coordinate system B, which is

offset by (x, y) and rotated counter-clockwise by an angle θ;

• To consider just rotation we create a new

frame V whose axes are parallel to those

of A but whose origin is the same as B;

• The relationships between B & V are:

• Or in the matrix form:

ˆ ˆ
A A A A Ap x x y y 

ˆ ˆ,A Ax y

ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

B V V

B V V

x x y

y x y

 

 

 

  

   
cos sin

ˆ ˆ ˆ ˆ
sin cos

B B V Vx y x y
 

 

 
  

 

2D Transformation (Cont.)

7

• We can represent a point P with respect to B as:

• Now we can describe how points are transformed

from frame B to frame V, where is called a rotation matrix.

• We just need to transformed from frames V to B first, and then from B to A

(translational):

 

 

ˆ ˆ ˆ ˆ

cos sin
ˆ ˆ

sin cos

B

B B B B B B B

B

B

V V

B

x
p x x y y x y

y

x
x y

y

 

 

 
    

 

   
   

   

cos sin

sin cos

V B BV

B

V B B

x x x

y y y

 

 

      
       
      

R

V

BR

cos sin

sin cos

VA B

VA B

xx xx x

yy yy y

 

 

         
            

         

Euler Angles

8

• Euler angles provide a way to represent the 3D orientation of an object

using a combination of three rotations about different axes;

• Euler’s rotation theorem states that any rotation can be considered as a

sequence of rotations about different coordinate axes;

• There are many ways to rotate the frames... The one we are going to use

here is to rotate along the z-axis first to get the yaw angle ψ, then the y-

axis to get the pitch angle θ, then the x-axis to get the roll angle ϕ;

• The complete rotation matrix for moving from the inertial frame to the

body frame is given by:

• All the individual rotation matrixes are

provided in the next page.

(, ,) () () ()B

I x y z     R R R R

http://www.chrobotics.com/library/understanding-euler-angles

Euler Angles (Cont.)

9

• The rotation matrix from the body frame to the inertial frame is given by:

• Singularity or Gimbal lock occurs when the orientation of the sensor

cannot be uniquely represented using Euler Angles;

• In this case, when pitch equals to 90° we cannot really distinguish

between yaw and roll angles.

cos sin 0

() sin cos 0 ,

0 0 1

z

 

  

 
  
 
  

R

cos 0 sin

() 0 1 0 ,

sin 0 cos

y

 



 

 
 
 
  

R

1 0 0

() 0 cos sin

0 sin cos

x   

 

 
 
 

  

R

(, ,)B

I

c c c s s

c s s c s c c s s s c s

s s c c s c s s c s c c

    

              

           

 
   
 

   

R

(, ,) () () ()I

B z y x

c c c s s c s s s c c s

c s c c s s s c s s c s

s c s c c

           

                 

    

  
       
 
  

R R R R

3D Coordinate Transformation

10

• Just like the 2D case, we can transform a position from frame A to B through

rotation and translation:

• The rotation matrices are special in the sense that they are orthogonal

matrices with determinant one:

• When singularity is not acceptable,

such as spacecraft navigation, other

methods were developed to

represent the vehicle orientation

(e.g. quaternions).

(, ,)

A B

A

A B B

A B

x x x

y y y

z z z

  

     
      
     
          

R

1, det 1T  R R R

Gambled Inertial Navigation

11

• In a gambled inertial navigation system,

all sensors including accelerometers and

gyroscopes, are mounted on a platform

which is isolated from any external

rotational motion;

• The calculations are simple: everything

are just based on straight integrations;

• However, the mechanical system is complex and heavy.

http://fourier.eng.hmc.edu/e80/inertialnavigation/node4.html

Strap-Down Inertial Navigation

12

• In strap-down systems the inertial sensors are mounted rigidly onto the

vehicle’s body;

• It’s a simpler system but with more computation requirements;

• Also the navigation equations are now nonlinear (with all the sine and

cosine functions needed for coordinate transformations).

http://fourier.eng.hmc.edu/e80/inertialnavigation/node5.html

1D Dead Reckoning

13

• Dead reckoning is the process of estimating one’s current position based on

a previously determined position and advancing that position based upon

known or estimated speeds over elapsed time, and course (e.g. inertial or

encoder navigation).

• If we only have one degree of freedom motion, such as a train (translation)

or a turn table (rotation), navigation is quite straight forward!

• Translation: , depending on what sensor you have (wheel

 encoder for V or accelerometer for a);

• Rotation: , where the angular rate r can be measured with a rate

gyro;

• Keep in mind that the integration process will accumulate errors over the

time even if the sensor noise is zero mean (remember the random walk

example earlier?);

• Dead reckoning is subject to unbounded cumulative errors!

t t

P V a  

t

r  

2D Strap-Down Inertial Navigation

14

• For a 2D (level) ground robot navigation problem, we have five states

to estimate: (x, y, Vx, Vy, ψ);

• Using inertial sensors, the first step is to figure out the robot yaw angle

ψ using the yaw rate gyro measurement:

• The second step is rotate the accelerometer measurements from the

robot body frame to the inertial frame:

• Then we can do the straight integration of accelerations to get the robot

position in the inertial frame;

• Writing in the state space form:

t

r  

cos sin

sin cos

I B B

x x xI

BI B B

y y y

a a a

a a a

 

 

      
       

      

R

cos sin

sin cos

x

y

B B

x x y

B B

y x y

x V

y V

V a a

V a a

r

 

 



   
   
   

    
   


   
      

3D Strap-Down Inertial Navigation

15

• For a 3D navigation problem, we now have nine states to estimate: (x,

y, z, Vx, Vy, Vz, ϕ, θ, ψ);

• The idea is the same as the 2D navigation problem earlier: figure out

the three Euler angles first, then rotate the accelerometer measurements

to the inertial frame, then perform the double integration of

accelerations to estimate the position;

• The Euler angles can be calculated through integrating the rate gyro

measurements:

• As we can see there is a division by cos(θ) so singularity could be a real

issue sometimes.

sin tan cos tan 1 sin tan cos tan

cos sin 0 cos sin

sin / cos cos / cos 0 sin sec cos sec

p q r p

q r q

q r r

        

    

        

        
                 
             

3D Inertial Navigation (Cont.)

16

• In state space form:

• We can see that the position calculation is the secondary process of the

angle and velocity calculation. The error will build up in this process so

getting a good position estimation using only inertial sensors can be

quite hard!

() ()

() ()

sin tan cos tan

cos sin

sin s

x

y

z

B B B

x x y z

B B B

y x y z

B B B

z x y z

x V

y V

z V

V c c a c s s c s a s s c c s a

V c s a c c s s s a c s s c s a

V s a c s a c c

p

ga

q r

q r

q

           

           

    

    

  

 

 
 
 
 
 

   
 

     
 

   
 
   
 


 
   ec cos secr  

 
 
 
 
 
 
 
 
 
 
 
 
  

GPS/INS Sensor Fusion Example

17

• GPS and INS (Inertial Navigation System) are meant to work together!

• GPS provides a statistically unbiased solution but could jump (high

frequency noise) randomly around the true position;

• INS provides a smooth solution (through the integration process) but

will drift over the time (low frequency error);

• Working together, the GPS/INS sensor fusion algorithm will smooth out

the GPS jumps and stop the INS drift – best of both worlds!

• To do this, we can directly use the strap-down inertial navigation

equations in the previous page for prediction;

• The input vector u will include all inertial measurements:

• The update will be based on the GPS measurements of the first six

states:

T
B B B

x y za a a p q r   u

T

x y zx y z V V V   y

GPS/INS Sensor Fusion (Cont.)

18

• We don’t have a direct measurement of the three Euler angle states, but

that’s not a problem;

• These three angles have showed up in the velocity prediction equations

so the update with the velocity measurement will also provide

constraints on what the values of ϕ, θ, ψ can take;

• The rest are just the standard EKF procedures: discretization, calculate

Jacobians, determine the process and measure noise covariance

matrices, then apply the EKF equations, and maybe some tuning...

• There are also several other ways to perform the GPS/INS sensor

fusion, which will not be discussed here;

• GPS/INS sensor fusion algorithms are very popular in autonomous

systems.

GPS/INS Sensor Fusion Results

19

• Through this simple approach, we can achieved two goals:

1. Smooth out noisy GPS measurements;

2. Provide estimates of attitude angles that were not measured directly!

100 200 300 400 500 600 700

-80

-60

-40

-20

0

20

40

Roll Angle

R
o
ll
 A

n
g

le
(d

e
g
)

Time(s)

Estimation

Measurement

205 210 215 220 225 230 235 240 245

155

160

165

170

175

GPS Z-Position

Z
-a

x
is

(m
)

Time(s)

Estimation

Measurement

Tilt Sensing

20

• In addition to gyro integration, the robot orientation can also be

determined by referencing some vectors of known directions;

• Three commonly accessible vectors are from the Earth’s gravitational

field (measured using accelerometers), magnetic fields (measured using

magnetometers), and rotation (measured using rate gyros);

• The gravity vector is accessible everywhere and normally it cannot be

interfered. It can be used to determine the roll and pitch angle for an

object that is stationary or moving at a constant velocity:

• Keep in mind that this method will not work if the robot is in

acceleration!

• We can get the heading angle with magnetometer readings, which has a

lot of issues to be discussed next.

arctan , arctan
sin cos

B B
y x

B B B

z y z

a a

a a a
 

 

   
         

Magnetic Heading

21

• Pigeons, bats, and sea turtles all use magnetic

information to find their way;

• The angle of inclination of the geomagnetic

field, δ, is measured downwards from horizontal and

varies over the earth's surface;

• It’s about 67° near Morgantown;

• Assuming the magnetic north is the same as the

geographic north and there are no hard or soft iron

effects, which are not true, the magnetometer

measurements are:

• But we don’t care too much about δ, what’s more important is to figure out

the magnetic heading in the horizontal plane;

North

Gravity Vector
Magnetic

Vector

cosB 

sinB 


cos

() () () 0

sin

B

x y z B



  



 
 
 
  

B R R R

Magnetic Heading (Cont.)

22

• With the angles ϕ and θ known from the accelerometers, the magnetometer

readings can be de-rotated to correct for the sensor tilt:

Where H is a horizontal frame pointing to the same heading as the robot. Its

x and y components are:

• Now we can solve for the heading angle:

• We typically use the ATAN2 function (with output angle range -180° to

180°) to solve for ϕ and ψ, and use the ATAN function (with output angle

range -90° to 90°) to compute θ.

cos

() 0 () ()

sin

H

x

B H

z y x y

H

z

B

B B

B



  



  
         
     

R R R B

cos cos , sin cosH H

x yB B B B     

sin cos
arctan arctan

cos sin sin sin cos

H B B

y z y

H B B B

x x y z

B B B

B B B B

 


    

   
          

Magnetic Sensor Calibration

23

• In reality, the magnetometer data is corrupted by both hard iron and soft

iron effects. The magnetometer measurements can be described as:

• Where V is a vector of three hard iron offsets and W captures the soft iron

effect which includes three rotation and three scaling parameters;

• These parameters can be calibrated through rotating the robot to visit all

different angles and then estimate the center position, the axes length, and

the orientation of the generated

ellipsoid;

• Once calibrated, the output should

be close to a perfect sphere and

centers at (0, 0, 0).

cos

() () () 0

sin

B B

Measure x y z tureB B



  



 
    
 
  

B WR R R V W V

http://www.honzinovo.cz/projects/heli/sensors/calibration/

SMART Robot Calibration

24

• Below is the calibration result for one of the SMART robot:

• Since we use the magnetometer only for heading, the converted results is

normalized to a total strength of one. The calibration parameters are:

-1

0

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

Calibrated Magnetometer Data

0.0067 2.3750 0.2485 0.2296

0.2667 , 0 2.6714 0.1862

0.0473 0 0 2.5061

   
     
   
      

V W

-0.5

0

0.5

-0.5

0

0.5

-0.4

-0.2

0

0.2

0.4

0.6

Raw Magnetometer Data

Before: After:

SMART EKF Example

25

• The SMART robot also has a simple EKF for attitude estimation;

• It uses the gyro integration functions for prediction:

• The predicted Euler angles are then updated with estimates using the

gravity vector and the magnetic vector:

sin tan cos tan

cos sin

sin / cos cos / cos

p q r

q r

q r

    

  

    

    
       
     

arctan , arctan
sin cos

B B
y x

B B B

z y z

a a

a a a
 

 

   
         

sin cos
arctan arctan

cos sin sin sin cos

H B B

y z y

H B B B

x x y z

B B B

B B B B

 


    

   
          

SMART EKF: Practical Issues

26

• Several issues had to be consider for this EKF to work properly;

• First, the initial gyro bias needs to be removed for a good dead reckoning

performance;

• Second, we should only update the ϕ and θ predictions if the robot is not

accelerating too hard; The total acceleration is:

• If it deviates too far from 1g, which only happens occasionally, the filter will

rely only on dead reckoning without getting an update;

• Third, the magnetometer have to be calibrated for soft and hard iron effects;

• Finally, even if fully calibrated, local magnetic field (caused by objects outside

of the robot) will still affect the heading estimation;

• So the total magnetic strength is also calculated and the update will stop if the

magnetometers sense abnormal values;

• Even with all these approaches, the filter still works the best without any iron

objects around the robot...

2 2 2

total x y za a a a  

Robot Dynamics and Kinematics

27

• Robot dynamics is concerned with the effects of forces on

the motion of the robot;

• The robot kinematics is mathematics of motion without

considering the forces that affect the motion;

• If we are controlling a high speed robot or a walking robot,

we may need to carefully model its dynamics to achieve the

best performance or stability;

• For a (low-performance) ground robot such as the Create,

we typically don’t worry too much about dynamics;

• However, we need to be familiar with the robot kinematics

for navigation, planning, and position control applications.

Kinematic Constraints

28

• A holonomic robot is one which is able to move instantaneously in any

direction in the space of its degrees of freedom;

• Most robots however cannot move that way...

• For example, we can not directly drive sideways with our cars;

• When we are planning the motion of a robot, we should take into account of

these limitations;

• From a positioning point of view, these constraints can sometime work to

our favor!

• Because we know the robot cannot be at

certain places at certain time...

• So that will limit the possible poses (position

and orientation) the robot can be at any given

time.

Robot Kinematics – Steering

29

• A commonly used model for a four-wheeled car-like vehicle is the

bicycle model;

• The bicycle has a rear wheel fixed

to the body and the plane of the

front wheel rotates about the

vertical axis to steer the vehicle;

• The robot cannot move sideways:

• The dashed lines show the direction

along which the wheels cannot

move, and these intersect at a point

known as the Instantaneous Centre

of Rotation (ICR) or Instantaneous

Center of Curvature (ICC).

, 0B B

x yV V V 

Steering (Cont.)

30

• The robot follows a circular path with center at ICR and angular velocity:

• Where R1 is the turning radius, L is the length of the vehicle or wheel base,

and γ is the steering angle;

• The front wheel must follow a longer path than the back wheel: R2> R1;

• The two steered wheels follow circular paths of different radius and therefore

the angles of the steered wheels γL and γR should be very slightly different;

• The velocity of the robot in the inertial frame is (Vcosθ, Vsinθ) so the

equations of motion are:

• When V is 0, the angle will not change, that is why cannot turn when the

robot is not moving.

1

tanV V

R L


  

cos

sin

tan

x V

y V

V L





 

   
   
   
      

Steering in Simulink

31

• The bicycle model can be easily simulated in Simulink:

• This simulation is available in the Robotics

Toolbox for MATLAB by Peter Corke;

• Make sure you try it out!

cos

sin

tan

x V

y V

V L





 

   
   
   
      

Kinematics – Differential Drive

32

• If we define left and right wheel velocities along the ground VL and VR,

the signed distance from the ICR to the midpoint between the wheels is

R, and width between wheels is l. The rate of rotation ω about the ICR

must be the same for both wheels:

• Solving these equations, we get:

• If Vl = Vr , the robot will drive straight forward;

• If Vl = -Vr , the robot will turn on the

spot;

• Otherwise the center of the robot will

both translate and rotate;

• If Vl = 0, and Vr ≠ 0 the robot will

rotate about the left wheel.

ICR

(2) , (2)r lR l V R l V    

;
2

l r r l

r l

l V V V V
R

V V l


 
 



Kinematics Model in the Body Frame

33

• Solving the equations earlier, we can get:

• In the body frame, we have the following relationships:

• Where r is the wheel radius, ωl and ωr are the angular velocity of the

left and right wheels;

• This robot model is useful for robot velocity control;

• The diameter of the wheels on Create is ~6.5 cm and the distance

(center to center) between the two wheels is ~26.3 cm;

;
2

r l r lV V V V
V R

l
 

 
  

2 2

0 0

B

x

lB

y

r

V r r

V

r l r l






   
                

Model in the Inertial Frame

34

• Forward kinematic model of the differential drive robot:

• The location of the ICR is:

• The forward kinematic model can be used for navigation; for example,

we can do dead reckoning to find out the robot position based on wheel

encoder readings;

• The opposite side of the question is: How can we control the robot to

reach a given configuration (also called pose) (x, y, θ) – this is known as

the inverse kinematics problem;

• Unfortunately, a differential drive robot has non-holonomic constraints

so we cannot specify an arbitrary robot pose (position and orientation)

and find the wheel velocities that will get us there;

• Some motion planning is generally needed to drive from one pose to

another.

cos

sin

x V

y V





 

   
   
   
       ICR sin , cosx R y R   

Introduction to SLAM

35

• Simultaneous Localization and Mapping (SLAM) is a group of methods

that solves the (chicken and egg) problem of how to determine a robot’s

location in a map while building the map at the same time;

• The solving of the SLAM problem was viewed as one of the major

breakthroughs in robotics;

• The idea is quite intuitive: when visiting a new place, we typically

navigate around and get to know the place while keep tracking of our own

location;

• This can be done with a EKF (among many other algorithms) in a

prediction and update framework: use dead reckoning (with encoders or

inertial sensors) for the prediction of the robot pose, and use sensors (laser

scanner or camera) to identify landmarks and update the robot pose and

landmark positions simultaneously;

• A YouTube video can be seen here.

https://www.youtube.com/watch?v=zodC8EFvh7g

• How to get around in the environment without needing the help from an

external positioning system is a great challenge in robotics;

• Dead reckoning alone will always drift over the time;

• Vectors of known directions, such as gravity and magnetic vectors, can be

used to help figure out the robot orientation (under certain limitations);

• Finding the robot position is in general a much hard problem than finding

the robot orientation;

• Sensor fusion, such as GPS/INS, can provide good navigation solutions

with low-cost but complementary sensors;

• SLAM is another sensor fusion algorithm that can help robots to navigate

without the GPS;

• The forward kinematics can be used for navigation and simulation, while

the inverse kinematics can be used for robot motion control.

Summary

36

• Our Textbook;

• Differential Drive Robots,

http://chess.eecs.berkeley.edu/eecs149/documentation/differentialDrive.pdf

• Understanding Euler Angles,

http://www.chrobotics.com/library/understanding-euler-angles

• Implementing a Tilt-Compensated eCompass using Accelerometer and

Magnetometer Sensors,

http://freescale.com.hk/files/sensors/doc/app_note/AN4248.pdf

• Calibrating an eCompass in the Presence of Hard and Soft-Iron

Interference,

http://www.freescale.com/files/sensors/doc/app_note/AN4246.pdf

• Search Wikipedia for keywords ‘Inertial Navigation’, ‘Rotation Matrix’,

‘Dead Reckoning’, and ‘SLAM’.

Further Reading

37

http://chess.eecs.berkeley.edu/eecs149/documentation/differentialDrive.pdf
http://chess.eecs.berkeley.edu/eecs149/documentation/differentialDrive.pdf
http://www.chrobotics.com/library/understanding-euler-angles
http://www.chrobotics.com/library/understanding-euler-angles
http://www.chrobotics.com/library/understanding-euler-angles
http://www.chrobotics.com/library/understanding-euler-angles
http://www.chrobotics.com/library/understanding-euler-angles
http://www.chrobotics.com/library/understanding-euler-angles
http://www.chrobotics.com/library/understanding-euler-angles
http://freescale.com.hk/files/sensors/doc/app_note/AN4248.pdf
http://freescale.com.hk/files/sensors/doc/app_note/AN4248.pdf
http://www.freescale.com/files/sensors/doc/app_note/AN4246.pdf
http://www.freescale.com/files/sensors/doc/app_note/AN4246.pdf

