
Instructor: Yu Gu, Fall 2013 

MAE 493G, CpE 493M, Mobile Robotics 

6. Basic Probability 

http://www2.statler.wvu.edu/~irl/


Uncertainties in Robotics 
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• Robot environments are inherently unpredictable; 

• Sensors and data acquisition systems are never perfect; 

• Robot actuators are not perfect either; 

• The internal models of the environment and robot itself are often 

inadequate, inaccurate, or totally wrong; 

• Hardware components can break down and bugs exist in the robot 

software; 

      ------------------ 

• The ability to recognize ones limitations and to make decisions 

accordingly is a sign of intelligence; 

• Therefore, we need to learn some probability and statistics! 

 



A GPS Example 
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GPS Measurement over 5.5 Hours 

Fire Hydrant & GPS Antenna 



GPS & Inertial Navigation Example 
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Inertial Navigation
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Inertial Navigation
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Inertial Navigation

GPS Measurement
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• Probability is a measure or estimation of how likely an event will happen or 

that a statement is true.  

 
Occurence

Probability
A Large Number of Tries
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Probability (In Other Words) 
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• Let S denotes the set of all possible outcomes for a given experiment, 

the sample space, and let E be an event, i.e.,  

• The probability of the event E occurring when the experiment is 

conducted is demoted Pr(E); 

• The probability maps S to the interval [0,1]. It has the following basic 

properties: 

 

 

• For example, Pr(head) = 0.5 and Pr(tail) = 0.5 when flipping a fair coin. 

Also,  

• Question: what is the probably for the temperature to be exactly 65°F at 

noon tomorrow? 

E S

0 Pr( ) 1E for all E S  

Pr( ) 1S  Pr( ) 0 

Pr( ) Pr( ) 1;S Head Tail  



Conditional Probability 
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• Conditional probability Pr(A|B) is the probability of some event A, 

given the occurrence of some other event B; e.g., the probability of a 

high UV index if it’s sunny outside. 

 

 

 

• For example, in a bag of 2 red balls and 2 blue balls (4 balls in total), 

the probability of taking a red ball is 1/2; however, when taking a 

second ball, the probability of it being either a red ball or a blue ball 

depends on the ball previously taken, such as, if a red ball was taken, 

the probability of picking a red ball again would be 1/3 since only 1 red 

and 2 blue balls would have been remaining. 

Pr( )
Pr( | )

Pr( )

A B
A B

B




Pr( ) Pr( | ) Pr( )A B A B B 



Conditional Probability Example 
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• Given the Euler diagram below, the unconditional probability Pr(A) is 

about 0.5. What are the conditional probabilities Pr(A|B1), Pr(A|B2), 

and P(A|B3)?  

S 
A 

B1 
B3 

B2 

0.1 

0.12 

0.04 

0.1 

Answer: Pr(A|B1) = 1, Pr(A|B2) = 0.75, and P(A|B3) = 0. 



Joint Probability 

9 

• Joint probability is a measure of two events happening at the same time, 

and can only be applied to situations where more than one observation 

can be occurred at the same time. 

 

• For example, a joint probability can not be calculated when tossing a 

coin on the same flip. However, the joint probability can be calculated 

on the probability of rolling a 2 and a 5 using two different dice.  

• For example, the probability that it’s going to rain tomorrow is 0.3. The 

probability that someone would go picnic in the rain is 0.1. What is the 

probability that this person will be picnicking in the rain tomorrow? 

 

• Notice that we are doing some reasoning here! This is how robots (and 

humans) make decisions. 

Pr( ) Pr( | )Pr( ) Pr( | )Pr( )A B A B B B A A  

Pr(Picnic Rain) Pr(Picnic | Rain) Pr(Rain) 0.1 0.3 0.03    



• Two events are (statistically) independent if the occurrence of one does not 

affect the probability of the other: 

 

• Two events A and B are independent if and only if their joint probability 

equals the product of their probabilities: 

 

• A finite set of events is mutually independent if and only if every event is 

independent of any intersection of the other events: 

 

 

• For example, what’s the probability of getting a total of 12 if you roll a fair 

dice twice?  

Pr( ) Pr( ) Pr( )A B A B 

Pr( | ) Pr( )A B A Pr( | ) Pr( )B A B

Independent Events 

1
1

Pr Pr( )
nn

i i
i

i

A A




 
  
 



Answer: 1/36 



Law of Total Probability 
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• The law of total probability shows that if {Bn : n = 1, 2, 3,...} is a finite 

partition of a sample space and each event Bn is measurable, then for 

any event A of the same probability space: 

• Or, alternatively: 

• The above mathematical statement might be interpreted as follows: 

given an outcome A, with known conditional probabilities given any of 

the Bn events, each with a known probability itself, what is the total 

probability that A will happen?  

• For example: Suppose that two factories supply light bulbs to the 

market. Factory X's bulbs work for over 5000 hours in 99% of cases, 

whereas factory Y's bulbs work for over 5000 hours in 95% of cases. It 

is known that factory X supplies 60% of the total bulbs available. What 

is the chance that a purchased bulb will work for longer than 5000 

hours? 

Pr( ) Pr( )n

n

A A B 
Pr( ) Pr( | ) Pr( )n n

n

A A B B

http://en.wikipedia.org/wiki/Law_of_total_probability


Law of Total Probability Example 
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• Solution: 

 

 

• Thus each purchased light bulb has a 97.4% chance to work for more 

than 5000 hours; 

• The summation can be interpreted as a weighted average, and 

consequently the probability, Pr(A), is sometimes called “average 

probability”. 

• Another example: the probability that it’s going to rain tomorrow is 0.3. 

The probability that someone will go picnic is 0.1 if it rains and 0.5 if 

not. What is the probability that this person will go picnic tomorrow? 

 

 

1 1 2 2Pr( ) Pr( | ) Pr( ) Pr( | ) Pr( )

99 6 95 4 974

100 10 100 10 1000

A A B B A B B 

    

Answer: 0.1×0.3 + 0.5×0.7 = 0.38  



Likelihood 
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• The likelihood of a set of parameter values, θ, given outcomes x, is 

equal to the probability of those observed outcomes given those 

parameter values, that is: 

• In statistics, probability is used when describing a function of the 

outcome given a fixed parameter value. Likelihood is used when 

describing a function of a parameter given an outcome. For example, if 

a coin is flipped 100 times and it has landed heads-up 100 times, what 

is the likelihood that the coin is fair?  

• For example: Let PH be the probability that a certain coin lands heads 

up (H) when tossed. So, the probability of getting two heads in two 

tosses (HH) is PH
2. If PH = 0.5, then the probability of seeing two heads 

is 0.25: 

• Another way of saying this is that the likelihood that PH = 0.5, given the 

observation HH, is 0.25, that is: 

( | ) Pr( | )L x x 

HPr(HH|P 0.5) 0.25 

H H(P 0.5 | HH) Pr(HH|P 0.5) 0.25L    

http://en.wikipedia.org/wiki/Likelihood_function


Likelihood (Cont.) 

14 

• But this is not the same as saying that the probability that PH = 0.5, 

given the observation HH, is 0.25. The likelihood that PH = 1, given the 

observation HH, is 1. However, two heads in a row does not prove that 

the coin always comes up heads, because HH is possible for any PH > 0. 

• A good way to estimate the parameter PH without additional knowledge 

is to use the maximum likelihood value. 

The likelihood function for estimating the 

probability of a coin landing heads-up 

without prior knowledge after observing HH 

The likelihood function for estimating the 

probability of a coin landing heads-up 

without prior knowledge after observing HHT 



Bayers’ Theorem 
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• Remember? 

• Bayers’ Theorem: 

• For some partition {Aj} of the event space, It is sometime useful to compute 

P(B) using the law of total probability: 

 

• This simple formulation is the foundation for a large field called Bayesian 

statistics. It is widely used in robot perception and decision making; 

• In fact, there has been evidence shown that this is the way how brain works in 

processing information (sometimes); 

• The Bayers’ theorem expresses how a subjective degree of belief should 

rationally change to account for new evidence; 

• I know none of these is making any sense to you yet, so let’s take a look at a 

motivating example next. 

Pr( | ) Pr( )
Pr( | )

Pr( )

B A A
A B

B


Pr( ) Pr( | )Pr( ) Pr( | )Pr( )A B A B B B A A  

Pr( | ) Pr( )
Pr( | )

Pr( | ) ( )

i i
i

j j

j

B A A
A B

B A P A





• Mathematically, let’s call Pr(A) as the probability that a person has the 

disease without known any test result. Pr(A)=0.001. 

• Let’s call Pr(B) the probability that a person is tested positive. We need 

to use the law of total probability here: 

 

• Pr(B|A) =1 is the probability of positive test is the person have disease. 

• Pr(A|B) can then be calculated with  

Example of Bayers’ Theorem 
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• A particular disorder has a base rate occurrence of 1/1000 people. A test 

to detect this disease has a false positive rate of 5% – that is, 5% of the 

time it mistakenly report a person to have the disease. Assume that the 

false negative rate is 0% – the test correctly diagnoses every person 

who does have the disease. What is the chance that a randomly selected 

person with a positive result actually has the disease? 

Pr( ) Pr( | ) Pr( ) Pr( | ) Pr( )

1 0.001 0.05 0.999 0.05095

B B A A B A A   

    

Pr( | ) Pr( )
Pr( | ) 0.02

Pr( )

B A A
A B

B
 



Example of Bayers’ Theorem (Cont.) 
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• Although the test is highly accurate, it in fact gives a correct positive 

result just 2% of the time; 

• From a different perspective, considering a population of 10,000 people 

who are given the test. Just 1/1000th or 10 of those people will actually 

have the disease and therefore a true positive test result. However, 5% 

of the remaining 9990 people, or 500 people, will have a false positive 

test result. So the probability that a person has the disease given that 

they have a positive test result is 10/510, or around 2%; 

• Looking back at the problem, several pieces of information based on 

past statistics were provided (base occurrence rate, false positive rate, 

and false negative rate);  

• The Bayers’ theorem allows us to make reasoning based on both past 

knowledge and new observations. 



Breaking Up the Bayers’ Equation 
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• Bayer’s theorem rewritten: 

• H is an hypothesis whose probability may be affected by a new observation 

(evidence). Often there are competing hypotheses, from which one chooses 

the most probable; 

• The evidence E corresponds to new data that were not used in computing the 

prior probability; 

• Pr(H), the prior probability, is the probability of H before E is observed. This 

indicates one's previous estimate of the probability that a hypothesis is true, 

before gaining the current evidence; 

• Pr(H|E), the posterior probability, is the probability of H after E is observed; 

• Pr(E|H), the likelihood, is the probability of observing E given H. It indicates 

the compatibility of the evidence with the given hypothesis. 

• P(E) is the same for all possible hypotheses being considered. This means that 

P(E) does not enter into determining the relative probabilities of different 

hypotheses. Therefore, posterior is proportional to prior times likelihood: 

Pr( | ) Pr( )
Pr( | )

Pr( )

E H H
H E

E


Pr( | ) Pr( | ) Pr( )H E E H H
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• Imaging we have three types of coins in a bag: Fair Coin (FC) with 

Pr(Head) = Pr(Tail) = 0.5; Head-heavy Coin (HC) with Pr(Head) = 0.6; 

and Tail-heavy Coin (TC) with Pr(Head) = 0.40.  

• Now let’s randomly pick a coin out of a bag. Now, we have three 

hypothesis for what kind of coin is this: FC, HC, or TC. So how do we 

know for sure (or at least with a good confidence)? 

• Without prior knowledge, we assume the prior probability for each 

hypothesis is the same Pr(FC) = Pr(HC) = Pr(TC) = 1/3.  

• Now we flip the coin once and the result is a head. This is a new 

evidence. The likelihood of seeing a head when the coin is fair is 

Pr(Head|FC) = 0.5. Likewise, Pr(Head|HC) = 0.6 and Pr(Head|TC) = 

0.4. Use Bayes’ theorem, we can find out the posterior probability for 

the three hypothesis (Next Page). 

 

Predicting the Coin Flipping Results 



Coin Flipping Continued 
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• Since we only have three possible hypothesizes here, 

 

• Now we have a set of new probability for the hypothesizes after 

observing a head:  

 

• Notice that the three hypothesizes are no longer evenly distributed. If 

we have to make a guess at this point, we would be guessing the Head-

heavy coin although without too much confidence.  

• So, what if we flipped the coin again and the result is now a tail? What 

would be out best guess after this new observation? 

1 1Pr( | ) Pr( | ) Pr( ) 0.50
3 6

FC Head Head FC FC   

1 1Pr( | ) Pr( | ) Pr( ) 0.60
3 5

HC Head Head HC HC   

1 2Pr( | ) Pr( | ) Pr( ) 0.40
3 15

TC Head Head TC TC   

Pr( | ) Pr( | ) Pr( | ) 1FC Head HC Head TC Head  

Pr( | ) 0.33; Pr( | ) 0.40; Pr( | ) 0.27FC Head HC Head TC Head  



Flip the Coin Again 
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• The posterior probabilities from the previous step is now becoming the 

prior probabilities for the new step: 

 

 

• Normalize the values again, we can get a new set of posterior 

probabilities: 
 

• Now the coin seems to be fair, although we are not quite sure;  

• This process can continue as you keep flipping coins, and this is called 

a recursive process; 

• Computers are really good at doing these tedious repetitive calculations; 

• Some MATALB results are showing in the next slide.   

Pr( | ) Pr( | ) Pr( ) 0.40 0.40 0.16HC Tail Tail HC HC   

Pr( | ) Pr( | ) Pr( ) 0.60 0.27 0.16TC Tail Tail TC TC   

Pr( | ) 0.34; Pr( | ) 0.33; Pr( | ) 0.33FC Head HC Head TC Head  

Pr( | ) Pr( | ) Pr( ) 0.50 0.33 0.17FC Tail Tail FC FC   



Flipping a Fair Coin for 400 Times 
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First Try: 

Second Try: 
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Fair Coin

Head Heavy

Tail Heavy
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Flipping an Unfair Coin for 400 Times 
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Head Heavy: 

Tail Heavy: 
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Review of Probability Properties 
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Pr( ) 1 Pr( )A A  

Pr( ) Pr( ) Pr( ) Pr( )A B A B A B    

Pr( ) Pr( ) Pr( )A B A B  

Pr( ) Pr( | ) Pr( ) Pr( | ) Pr( )A B A B B B A A  

Pr( ) Pr( ) Pr( )A B A B 

• Not A (A Complement): 

• A or B: 

• A or B, if A and B are mutually exclusive: 

• A and B:  

• A and B, if A and B are independent: 

• A given B: 
( ) Pr( | ) Pr( )

Pr( | )
( ) Pr( )

P A B B A A
A B

P B B


 



• Uncertainty is everywhere in robotics; 

• A robot gets smarter if it can make decisions based on 

knowledge of the uncertainty; 

• Byers’ theorem is the foundation for robot (and human) 

decision making; 

• The posterior  probability is affected by the prior 

probability and the likelihood (the probability of seeing 

the new observation giving the hypothesis). 

Summary 
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• Search on Wikipedia the following key words: 

‘probability’,‘likelihood’,‘conditional probability’, 

‘independent events’, and ‘Bayer’s theorem’; 

• Any intro level statistical book such as: “Probability, 

Statics, and Random Processes for Electrical Engineering” 

by Alberto Leon-Garcia; 

• Bayes for Beginners: 

http://www.ualberta.ca/~chrisw/BayesForBeginners.pdf  

 

 

Further Reading 
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http://www.ualberta.ca/~chrisw/BayesForBeginners.pdf
http://www.ualberta.ca/~chrisw/BayesForBeginners.pdf

