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Abstract

Terrain trafficability (and consequently, vehicle traversability) is an important factor in planetary rover
missions. Terrain trafficability is defined as the ability of a terrain to sustain the traversal of a mobile vehicle
(Papadakis, 2013; Muro, 2004). It depends on the rover itself and factors such as terrain properties and
topography. Currently, the trafficability assessment mostly depends on on-board images taken from the
previous sol (Martian day), with which making a reliable assessment on the surface beyond a few tens of
meters from the current position is difficult. Orbital images are also used to assess the drivability beyond
this distance, but it is hard to make a reliable prediction on key trafficability metrics, such as slip, due to
its limited resolution. To improve predictions over extensive distances and to support ground assessment
of the terrain, this paper proposes a method to support slip assessment from thermal inertia measured by
orbital observations. More specifically, the proposed model takes thermal inertia maps and digital elevation
models as inputs and predicts whether slip is less than 30% or greater. Thermal inertia translates the ability
of a material to store heat during the day and release it at night, and depends on various terrain properties
(e.g., grain size, conductivity), that could affect trafficability. In general, the lower the thermal inertia, the
lower the trafficability, and vice versa (Cunningham, 2017). These results confirms that thermal inertia
plays an important role in predicting slip and could improve terrain trafficability assessment significantly.
Other data sets were also tested in combination with thermal inertia and slope, such as terrain types and
rock abundance, but it did not significantly change the performance of the model. The contribution of this
work is to incorporate thermal inertia to slip prediction, producing a model that can give results covering
great distances, and could be key to safer missions.
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1. Introduction1

Terrain trafficability is an important factor in all planetary rovers, especially as future surface missions2

become more complex and aim at going further into the solar system (Lorenz et al., 2018). These missions3

require autonomy in robotics as it would enable driving beyond line-of-sight (i.e., beyond what is seen on4

images received from the planet’s surface), ensure safety at every step, and allow more complex designs5

to be put together with restricted budget and staffing (Fong et al., 2017). Trafficability is defined as the6

ability for a given terrain to sustain the traversal of a mobile robot without reaching failure and involves7

studying the robot’s response to the terrain it is driven on (Papadakis, 2013). While trafficability is a terrain8

characteristic, this work also mentions traversability, which is the ability of a vehicle to traverse a terrain.9

The two are used throughout this paper, depending whether the rover or the terrain is considered.10

For planetary surfaces, the terrain is not always known and research has focused for years on ways to assess11

trafficability and traversability with limited information. After the loss of the rover Spirit at Gusev Crater12

in 2010, it has become even more important to understand terrain properties and how vehicles interact with13

the ground on remote worlds. Spirit traversed compacted terrain at the beginning while on Gusev plains,14

Proceedings of the ISTVS International Conference, Montreal, Canada, September 2020



2

however, upon arriving at the Columbia Hills, it encountered highly deformable sulfate rich soil that made15

traversability a challenge (Johnson et al., 2015). Moreover, these soils were covered in basaltic sand, making16

them invisible to the team planning the traverse. The rover underwent high sinkage (up to 10 cm), and the17

failure of the right front wheel actuator made the traverse even worse as Spirit was forced to drag its wheel18

along. It eventually got embedded in a sand filled crater when the left side of the rover tilted into the crater19

and the wheel got stuck (Johnson et al., 2015). Failure to extricate Spirit led to the end of its mission in20

2010. Opportunity encountered high wheel sinkage situations as well, at Endeavour Crater, when it came21

across the Purgatory ripple field (Arvidson et al., 2011) and Curiosity experienced mobility difficulties with22

wheel damage (holes and dents) from roving on sharp rocks (Arvidson et al., 2017).23

Terramechanics, i.e., vehicle-terrain interaction mechanics, has been identified as a way to assess traffica-24

bility given the constraints of planetary missions, and more specifically, the interaction of the rover’s wheels25

with the surface can potentially provide answers to the question of trafficability. Understanding the terrain26

and its interaction with Curiosity’s wheels may have prevented any damage, and there is a recognized need27

to incorporate terramechanics to planning to prevent mobility issues (Arvidson, 2014). Early in the applica-28

tion of terramechanics to planetary rovers, some variables have been identified as necessary for exploration29

missions, such as slip (Ding et al., 2011). The authors point out the necessity of estimating the amount of30

slip encountered by the rover, given the limited onboard computational resources. Slip is highly related to31

terrain trafficability: limited slip could indicate traversable areas, and high slip could point to difficult if32

not untraversable areas. Most importantly, high slip can lead to the rover getting embedded, temporarily33

trapped, as did Curiosity on sol 672 (Bouguelia et al., 2017), or not being able to recover, as demonstrated34

by Spirit (Johnson et al., 2015).35

As NASA prepares for its very next rover mission to Mars, Mars 2020, it is important to understand how36

the Perseverance Rover would potentially behave when roving on the regolith at Jezero Crater, the chosen37

landing site (NASA, 2018). The goal of this research is to assess slip using orbital imagery available, leading38

to prediction over extensive areas that could support ground-based terrain trafficability assessment. This39

paper is organized as follows: after detailing related research, the problem statement of this work will be40

presented, followed by the technical approach. Results and conclusion will be presented next.41

2. Related Work42

As previously mentioned, terrain trafficability is an important factor to take into consideration in prepa-43

ration for the next Mars mission, Mars 2020. During the lunar era, missions such as Lunakhod and Apollo44

sent instruments to the Moon to assess the terrain and its trafficability (Zacny et al., 2010). Since, research45

has been published that uses terramechanics to assess the terrain in real time, and includes a wide range of46

techniques, from the use of wheels and sensors to actual instruments (Chhaniyara et al., 2012). For example,47

a terrain classifier has been proposed that uses the vibrations induced in the vehicle by the wheel-terrain48

interaction during a drive (Brooks & Iagnemma, 2005) to identify terrains and assess their safety with re-49

gards to driving. Another model was proposed to identify key terrain properties using on-board sensors and50

estimate traversability from these parameters (Iagnemma et al., 2004). Both models assess traversability51

while driving, which makes predictability for long distances a challenge. To remedy this issue, other methods52

have been proposed, such as simulations offline of traverses on a user-defined terrain with a software called53

ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator). This software has54

been validated with a single wheel experiment (Senatore et al., 2014), as well as tests in the JPL Mars Yard55

and field experiments in the Mojave Desert (Zhou et al., 2014, 2017). It has then been used to simulate56

traverses for the Opportunity and Curiosity rovers. However, since orbital imagery is usually not enough to57

fully characterize a terrain (Gaines et al., 2016), this method requires ground data and is therefore limited58

to the few tens of meters ahead of the rover, where terrain parameters can be assessed more precisely. More59

recently, several authors have looked into predicting better traverse performance by taking into account or-60

bital data such as HiRISE (High Resolution Imaging Science Experiment) or slope in a software called Mars61

Terrain Traversability Tool (Ono et al., 2016). MTTT uses a terrain classifier, Soil Property and Object62

Classification (SPOC) that analyses HiRISE images to classify different terrains into different categories63
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(Rothrock et al., 2016). These terrain types are coupled with rock abundance (Cumulative Fractional Area64

(Golombek & Rapp, 1996) or CFA), hazards and slope to predict rover speed (Ono et al., 2016).65

Some other terrain trafficability prediction models use slip to directly assess the safety of driving (Ding66

et al., 2009). Slip is an important aspect of terrain trafficability and has been the subject of many studies67

(Senatore et al., 2014; Johnson et al., 2015). It is a response of the wheels driving on a surface (e.g., sandy,68

steep) and is highly related to the terrain type. Intuitively, high slip lowers trafficability, as seen with Spirit69

when its wheels reached 100% slip (Johnson et al., 2015), and vice-versa. Tests to analyze slip behaviors70

for MERs on different slopes were conducted in the laboratory (Biesiadecki et al., 2006). Several models for71

slip have been proposed, especially in the foundation work of terramechanics (Bekker, 1969; Wong et al.,72

1989), but it is not until later that predicting slip has been attempted and used as a mean of assessing73

terrain trafficability. For example, some authors have proposed a model that utilizes on-board cameras to74

remotely classify terrains, predict slip and plan the path given the three terrain categories: traversable, not75

traversable, and uncertain. This system has been specifically intended for planetary rovers after seeing the76

difficulties encountered on Mars (Helmick et al., 2008). Another prediction model uses visual information77

from the rover itself (e.g., stereo images) to give an estimate of slip on forthcoming terrains (Angelova et al.,78

2007; Angelova, 2008) to help identify safer paths. Later, thermal inertia has been suggested as a tool to79

assess slip, using both the Ground Temperature Sensor (GTS) onboard Curiosity (Sebastián et al., 2010) and80

the Thermal Emission Imaging Spectrometer (THEMIS) onboard the satellite Mars Odyssey (Christensen81

et al., 2004). The results from rover-based and orbital analysis show that thermal inertia greatly helps82

in improving slip predictions given slope, and that overall, lower slip is correlated with decreased thermal83

inertia (Cunningham, 2017). Most of slip prediction methods, however, utilize on-board resources and do84

not rely solely on orbital imagery.85

3. Problem statement and contribution86

The main goal is to provide a method that predicts ranges of slip for a Mars rover in order to facilitate87

and support ground terrain trafficability assessment, using only information available a priori, i.e., orbital88

data. Terrain information publicly available includes topography, (Digital Elevation Models or DEMs via89

HiRISE, the High Resolution Imaging Science Experiment), thermal inertia and slip data for both Mars90

Exploration Rovers (MER), i.e., Spirit (MERa) and Opportunity (MERb). In addition, other information91

available for this study include rock abundance (Golombek & Rapp, 1996) or CFA (Cumulative Fractional92

Area) and terrain types (Rothrock et al., 2016); however, these information are only available at Gusev93

Crater (MERa landing site). The main constraint for this research is the limited amount of data available,94

that is, the analysis is limited to the length of the traverses, the orbital coverage over the traverses, and the95

slip checks performed along the way. The main challenge is to reconcile the data to obtain values of slope,96

thermal inertia and slip, as well as terrain types and CFA when available, at measurement points. It is97

assumed that this method can be applied to other landing sites on Mars for other rovers (e.g., Perseverance).98

The contributions of this work are the following: 1) to propose a method that allows for direct prediction99

of slip using orbital data only; 2) to provide a mean of predicting slip that can support ground terrain100

assessment; and 3) to give trafficability information over extended distances, as long as the orbital coverage101

is available, which means that a path can be analyzed with greater certainty prior to the mission landing.102

4. Technical approach103

4.0.1. Orbital Data104

Thermal inertia can be used for terrain trafficability analysis as it brings information about the sur-105

face and subsurface. It is derived from the Mars Odyssey Thermal Emission Imaging System (THEMIS)106

nighttime temperatures (Fergason et al., 2006) and depends on several factors including particle size, degree107

of induration, rock abundance and exposure of bedrock at the subsurface (within a few centimeters of the108
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surface). It translates the ability of a material to store heat during the day and release it at night (Putzig109

et al., 2005) and is defined as follows:110

I =
√
kρc (1)

Where I is the thermal inertia in thermal inertia unit (TIU, 1 TIU = 1 Jm−2K−1s−1/2 ), k is the bulk111

thermal conductivity, ρ is the bulk density and c is the specific heat of the surface layer (up to a few112

centimeters below the surface (Putzig et al., 2005)). In general, given that thermal inertia is directly113

proportional to the bulk density and therefore compaction and bearing strength, low values are associated114

with deep sand, leading to harder conditions for a rover to drive, whereas high thermal inertia translates115

into indurated material such as bedrock. This implies that the rover would have less difficulty driving on116

terrains displaying higher values of thermal inertia (Cunningham, 2017). The thermal inertia data set has a117

resolution of 100 m/pixel (Fergason et al., 2006). Thermal inertia has been used in the past to understand118

surface properties (Putzig & Mellon, 2007) and has been considered for slip predictability and trafficability119

assessment (Cunningham, 2017).120

Slope also plays a significant role in terrain trafficability. The Mars Exploration Rovers (MERs) avoided121

slope greater than 30◦ due to potential sliding on steeper slope (Biesiadecki et al., 2006). Testing has been122

conducted to understand trafficability on different slopes for Spirit and Opportunity (Lindemann & Voorhees,123

2005) and Curiosity (Heverly et al., 2013). Slope is obtained from Digital Elevation Models (DEMs) over124

selected areas, which have a resolution of 1m/pixel. Slope is derived from the gradient of the height from125

the DEM times the heading angle in the rover’s direction as shown in Eq.(2).126

S =

(∂h
∂x
∂h
∂y

)
·
(
cosθ
sinθ

)
(2)

Where h is the height given by the DEM, (x, y) are the coordinates of the location for which slope is127

calculated (pixel of 1 square meter), and θ is the heading angle. The slope is calculated at the (x, y) location128

by deriving the gradient for the average height over 9 pixels (the pixel (x, y) and the 8 surrounding pixels).129

In addition to thermal inertia and slope available at both sites, the SPOC software generated a terrain130

type map for Gusev Crater (Rothrock et al., 2016) and the associated CFA coverage (Golombek & Rapp,131

1996) was made available for this study.132

4.1. Principal Component Analysis (PCA)133

Table 1: Principal Component Analysis (PCA) results showing PC (Principal Components) 1 to 4 with the
contribution of each variable (in %).

PC1 PC2 PC3 PC4

Variance explained 46.51% 28.21% 14.83% 10.46%

Thermal inertia 6.250% 65.62% 14.78% 13.35%
Slope 19.82% 30.70% 44.60% 48.80%

Terrain types 34.94% 0.9800% 40.55% 23.53%
CFA 38.99% 2.710% 0.07450% 58.23%

To better understand the role of slope and thermal inertia, a Principal Component Analysis (PCA) on134

all four variables (thermal inertia, slope, terrain types and CFA), centered and standardized, is performed135

at Gusev Crater. It revealed that the first three components contribute to 89.54% of the data, almost 90%,136

and the first two alone contributes to 74.71% of the data, almost 75%. The biplot shown in Fig.1 shows that137

if terrain types and CFA contribute the most to PC1, slope and thermal inertia contribute the most to PC2138

and most importantly, to the total explained variance by dimension one and two, at 53.70% and 39.23%139

respectively (Fig.1). Thermal inertia and slope are thus retained as the main contributing variables and the140

predictors needed for slip analysis.141
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Fig. 1: Biplot showing the contribution of each variable to the first two PCs that explain 75% of the data. TI: thermal
inertia; TT: terrain types; CFA: cumulative fractional area.

4.2. Data points available142

The data are taken from both the Opportunity and Spirit rovers, at Meridiani Planum and Gusev Crater,143

respectively. Slip was recorded only when Visual Odometry (VO) was enabled - called “slip checks” (Maimone144

et al., 2007). However, VO was not always an option since it did not allow for fast speed (Biesiadecki et al.,145

2007), and consequently, few data points were available for this study, as shown in 2. 2073 data points were146

collected for Spirit (MER A, Fig.2b) and 3250 for Opportunity (MER B, Fig.2a, processed DEM coverage147

is not available everywhere at Meridiani Planum).148

4.3. Data processing149

If slope has been identified for a long time as a factor for slip experienced by rovers (Bouguelia et al.,150

2017), the role of thermal inertia was not as clearly defined until recently (Cunningham, 2017). It is related151

to terrain properties as shown in section 4.0.1 and is important with regards to predicting slip.152

The slope and thermal data were combined to train a classifier to predict ranges of slip: lower than 30%153

or higher than 30%. This threshold was taken from a similar classification used in Bouguelia et al. (2017)154

with classes medium slip (30 − 60%) and high slip (> 60%) combined into one category. While their work155

focuses on tracking ranges of slip from ground data and rover behavior, this research aims at producing a156

classifier that will allow slip prediction exclusively from orbit. In order to obtain the value for slope and157

thermal inertia at the location of the slip value, the raw data were georeferenced and longitude and latitude158

for each pixel of the maps were obtained. Similarly, slip checks coordinates in terms of latitude and longitude159

were computed along the traverse. And finally, the height from the DEM at each pixel was converted to slope160

by averaging the values over the height surrounding pixels and deriving the gradient in the rover direction.161

4.4. Classifier training162

Once the matrix of slope, thermal inertia and slip values at measurement locations was obtained, the163

data were prepared for training a classifier. It involved converting the slip data to two categories, that is,164

“low” and “high”, which correspond to 0−30% and above 30%, respectively. Slope and thermal inertia were165

also categorized into different classes. Slope categories were taken from Ono et al. (2018), where the ranges166

considered are 0 − 5◦, 5 − 10◦, 10 − 15◦, 15 − 20◦, 20 − 15◦ and above 25◦. However, slope above 15◦ are167
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(a) MERB traverse (total length: 45.16 km)
and slip checks.

(b) MERA traverse (total length: 7.751 km) and slip checks (the part
where checks were performed is zoomed in).

(c) Legend

Fig. 2: Data points available for this study. (a) Slip checks with orbital coverage available for Opportunity (in red, B
data kept for validation). (b) Slip checks with orbital coverage available for Spirit (in red, A data used for training).
(c) Legend.

already considered complicated terrain (Biesiadecki et al., 2007), therefore only 3 categories of slope were168

considered: 0 − 10◦, 10 − 15◦ and above 15◦. Each category was then split to account for the direction of169

the slope, that is, up or down. Thermal inertia was also divided into categories, with high thermal inertia170

above 200 TIU and low thermal inertia below 200 TIU.171

Multiple classification methods were considered, including: trees, naive Bayes or nearest neighbors. The172

Spirit data were used for training the classifier (referred to as the A set) and the data from Opportunity were173

used for validating the trained classifier (referred to as the B set). However, it should be noted that among174

the 2 categories, both for the training data and the testing data, the first category is over-represented. For175

all data sets combined, there is a total of 5323 slip check points with the required orbital coverage, with 4491176

belonging to class “low” (84.4%) and only 832 belonging to class “high” (15.6%). Among the A set (from177

Spirit’s traverse), 1600 are category “low” (77.2%) and 473 are “high” (22.8%). Among the B set (from178

Opportunity’s traverse), 2891 are “low” (89%) and 354 are “high” (11%). This led to an imbalanced class179

problem for training the classifier that needed to be taken into account. There are ways to handle the class180

imbalance so that the model does not get biased towards the most represented category, including tuning the181

misclassification cost matrix or using boosting and/or sampling methods (Weiss, 2004) such as AdaBoost182

(Adaptive Boosting) (Liu et al., 2008) or RUS (Random Under Sampling). Authors have also proposed to183
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combine both sampling and boosting methods to improve even further the performance of a classifier when184

handling imbalanced data, called RUSboost (Seiffert et al., 2008). When compared to different algorithms,185

RUSboost was proved to perform better than sampling or boosting methods alone (Seiffert et al., 2009).186

5. Results187

5.1. Classifier training188
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Fig. 3: Confusion matrices showing the performance of the trained model on data set B2.

As a result of the PCA analysis in section 4.1, the classifier was trained using the variables contributing189

the most to the explained variance, that is, slope and thermal inertia. The best results were obtained using a190

decision tree classifier with a RUSboost algorithm and a penalty cost of 5 for “low” misclassified as “high” and191

1.5 for “high” misclassified as “low”. The classifier algorithms was first chosen based on overall performance192

and has the following characteristics: maximum number of split is 50 and the number of learners is set to 30.193

The same model was then trained without thermal inertia as a predictor. The performance of the classifier194

is presented in Fig.3. The overall performance is 68.7% for the classifier with two predictors and drops to195

49.6% when using only slope as a predictor. The overall performance the trained models tends to confirm196

the results from the PCA analysis, demonstrating the need for thermal inertia. Low slip prediction increases197

from 40% to 72% when adding thermal inertia; however, high slip prediction shows better results when the198

algorithm is trained with one predictor only. Overall, the conclusion is that thermal data are an important199

component of slip prediction analysis.200
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Fig. 4: Confusion matrices on test data set B for (a) model with 2 predictors and (b) model with 1 predictor.

5.2. Validation on new data201

All data from the B set were used to test the trained classifier. The results are presented in Fig.4 where202

the algorithm using thermal inertia and slope as predictors (Fig.4a) and the model taking only slope as203

predictor (Fig.4b) are tested.204

The results show that the overall performance of the model is good (72.0%) and decreases significantly205

(down to 56.3%) when using only slope as a predictor. This confirms that thermal inertia is an important206

value to consider when predicting slip. The model is capable of predicting low slip and high slip pretty well,207

scoring 71.9% and 72.0% of the data, respectively. When thermal inertia is dropped and slope only is used,208

the model goes barely above average for low slip data, predicting only 61.3%, and does not even correctly209

categorize more than a quarter of the high slip data, scoring only 15.9%. The model trained with only slope210

as predictor therefore performs poorly and these results reinforce previous conclusions: thermal inertia is a211

valuable asset to the prediction of mobility performance.212

6. Conclusion213

This work implemented a classifier that takes orbital data as input to predict whether slip will be greater214

or less than 30% over chosen areas. By comparing the same type of classifier with difference input, it215

is established that thermal inertia plays a key role in predicting the amount of slip the rover is likely to216

experience, as suggested in Cunningham (2017). Indeed, thermal inertia gives valuable insight into the first217

few centimeters of the terrain, which greatly affect the rover performance. When paired with slope, thermal218

inertia is able to predict with good accuracy the range of slip a vehicle will experience on a given terrain.219

Future work includes studying the performance of this classifier at other landing sites, such as Gale220

Crater, and improving its efficiency with the additional information.221
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