
Instructor: Yu Gu, Fall 2013

MAE 493G, CpE 493M, Mobile Robotics

3. Robot Communication

http://www2.statler.wvu.edu/~irl/

• Parallel communication is a method of conveying multiple binary

digits (bits) simultaneously;

• Serial communication is the process of sending data one bit at a time,

sequentially, over a communication channel or computer bus.

Parallel and Serial Communication

2

• Whenever an electronic device transmits digital data to

another electronic device, there must be a certain rhythm

established between the two devices, i.e., the receiving

device must have some way of knowing, within the

context of the fluctuating signal that it's receiving, where

each unit of data begins and where it ends;

• Synchronous transmissions are synchronized by an

external clock, while asynchronous transmissions are

synchronized by special signals along the transmission

medium;

• Asynchronous transmissions are usually simpler and

cheaper, but slower than synchronous transmissions.

Asynchronous and Synchronous

3

• The SPI bus is a synchronous serial data link, named by Motorola,

that operates in full duplex mode. Devices communicate in

master/slave mode where the master device initiates the data frame.

Multiple slave devices are allowed with individual slave select (chip

select) lines.

 SCLK – Serial Clock;

 SS – Slave Select

 MOSI – Master Output, Slave Input;

 MISO – Master Input, Slave Output.

• The IMU Sensor on the SMART robot talks

with the NetBurner Mod5213 Microprocessor

with a SPI communication link.

Serial Peripheral Interface (SPI)

4

• RS-232 is the traditional name (first introduced in 1962!) for a series

of synchronous serial communication standards between a DTE

(Data Terminal Equipment) and a DCE (Data Communication

Equipment).

• RS233 can no longer be found on your PC, but is still common for

embedded microprocessors.

• A minimal "3-wire“ connection

consisting only of transmit data,

receive data, and ground, is

commonly used.

RS-232 Serial Port

5

RS232, TTL, and LVTTL

6

Type Logic High Logic Low

RS-232 (A Serial Communication Standard) (-3.0)-(-25) V 3.0-25 V

TTL (Transistor-Transistor Logic) 2.0 - 5.0 V 0.0-0.8 V

LVTTL 2.0 - 3.3 V 0.0-0.8 V

Level

Shifters

https://www.sparkfun.com/tutorials/215

Null Modem and Loopback

7

Use a Null Modem cable to connect between two computers.

Loopback connectors can be used for debugging and testing.

Without Handshaking With Handshaking

http://airborn.com.au/serial/rs232.html
http://airborn.com.au/serial/rs232.html

RS232 Signals

8

• A typical RS-232 logic waveform has 1 Start bit, 8 Data bits, No Parity

and 1 Stop bit. The data transmission starts with a Start bit, followed by

the data bits (LSB sent first and MSB sent last), and ends with a "Stop"

bit;

• RS-232 connects the ground of 2 different devices together, which is

the so-called “unbalanced" connection. An unbalanced connection is

more susceptible to noise, and has a distance limitation of 50 ft (which

is around 15 meters).

http://www.commfront.com/RS232_Protocol_Analyzer_Monitor/RS232_Analyzer_Monitor_Tester_Tutorial.htm

Serial Parameters

9

Port Number: pick which serial port to use.

Baud Rate: communication speed that measures the number of bit transfers

per second. For example, 19200 baud is 19200 bits per second.

Serial Parameters (Cont.)

10

Parity: a method of detecting errors in transmission. For Even and Odd

parity, the parity bit is set to a value to ensure that the data packet has an

Even or Odd number of logic-high bits. Mark parity simply sets the parity

bit to logic-high and Space sets the parity bit to logic-low.

Data Bits: the number of data bits in a communication packet. Typically

LSB is sent first, which is called "little endian."

Stop Bits: signal the end of a communication packet. This also helps to

synchronize different clocks on the serial devices. Can be 1, 1.5, or 2.

Serial Buffer

11

• A buffer is a region of memory used to temporarily store data while it is

being moved from one place to another.

• The RS232 interface has at least two buffers each for sending and

receiving data. First-In-First-Out (FIFO) buffers allow picking off

individual bits for transmission.

• The operating system, such as Linux

or Windows, sets aside part of

memory for its own serial buffers.

• You might loose data if the allocated

buffer is too small or have excessive

delay if the buffer is too big.

http://www.renesas.com/support/faqs/faq_results/Q1000000-Q9999999/design/tech/tech_054gl.jsp

Flow Control (Handshaking)

12

• Flow control is the process of managing the rate of data transmission

between two nodes to prevent a fast sender from overwhelming a slow

receiver. By using Handshaking signals, receivers will be able to tell the

sending device to pause data transmission if the receiver is overloaded.

• Hardware flow control often use the RS-232 RTS/CTS signal circuits.

Generally, the RTS and CTS are turned off and on from alternate ends to

control data flow, for instance when a buffer is almost full.

• In software flow control the XON/XOFF

characters are sent by the receiver to the

sender to control when the sender will send

data. XON is decimal 17 and XOFF is

decimal 19 in the ASCII chart. A drawback

of software handshaking is that these two

control characters can not be used in data.

Binary and ASCII

13

• Serial communication is always in binary (1s and 0s), but you can

interpret it differently.

• Most time, if the message is in human language, we tend to use ASCII

(American Standard Code for Information Interchange), which is a

character encoding based on the English alphabet.

• If we want to send sensor data, it’s more efficient to use binary bytes.

The Standard ASCII Table

14

http://www.asciitable.com/

The Extended ASCII Table

15

Data Packet

16

• Data to be transmitted are often grouped into a pre-negotiated format

(communication packet).

• Click here for an example of the Novatel GPS (Page 21).

• For the SMART robot, we have a 50-byte communication packet

between the sensor interface board and the laptop with the following

configuration:

Byte Content

0 Header Sync #1 (6510, ASCII “A”)

1 Header Sync #1 (9010, ASCII “Z”)

2 8-bit Counter (0-255)

3-48 Data bytes

49 Checksum

http://www.novatel.com/assets/Documents/Manuals/om-20000129.pdf

The Counter

17

20 40 60 80 100 120 140 160 180 200

0

50

100

150

200

250

Data Logger Counter

Time Step

C
o
u

n
te

r
V

a
lu

e

0 50 100 150 200
0

1

2

3

4

5

6
Data Logger Counter Difference Between Time Steps

Time Step

C
o
u

n
te

r
D

if
fe

re
n

c
e
 V

a
lu

e

The counter can help us to synchronize the data in time and

can provide valuable information about the communication

transmission quality.

50 Hz of Transmitted Data Received at ~10Hz at the SMART Laptop

Check Sum

18

• Many serial protocols use checksum (additional bytes added at the end

of the data packet) to check the data integrity, as errors might occur

during data transmission;

• There are many types of checksum, from the simple Modula to

sophisticated Cyclic Redundancy Checks (CRC) calculation;

• With the Modula method, the sender adds all command bytes together

then mod it by 256 (decimal) to get an additional byte. This is to be

added at the end of the command string. When the receiver receives the

command string, it will first check the added byte to see whether data

remain unchanged or not. If that is the case, it will accept the data, and

if not, it will discard the data or ask the sender to resend the data;

• The SMART Robot uses a 1-byte Modula check sum.

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Data Component (SMART)

19

Byte Content

3, 4 IMU Acceleration x-axis

5, 6 IMU Acceleration y-axis

7, 8 IMU Acceleration z-axis

9, 10 IMU Angular Rate, p

11, 12 IMU Angular Rate, q

13, 14 IMU Angular Rate, r

15, 16 IMU Magnetic x-axis

17, 18 IMU Magnetic y-axis

19, 20 IMU Magnetic z-axis

21, 22 IMU Temperature

23, 24 Reserved A/D channel #1

25, 26 Reserved A/D channel #2

Byte Content

27, 28 Front rangefinder

29, 30 Front Left rangefinder

31, 32 Left rangefinder

33, 34 Back rangefinder

35, 36 Right rangefinder

37, 38 Front Right rangefinder

39 LSB for switch #1, LS+1 for switch #2

40- 48 Reserved. Current values are 67-75

(ASCII ‘C’-’K’)

For a 16-bit data channel, the upper byte is

transmitted first, then the lower byte:

 Int16_Value = Upper_Byte *256 + Lower_Byte

• Two's complement is the most common method of representing signed

integers on computers.

• The two's complement of an N-bit number is defined as the complement

with respect to 2N; i.e., the result of subtracting the number from 2N.

• An N-bit two's-complement numeral system can represent every integer

in the range −(2N-1) to +(2N-1 − 1).

• For example, an 8-bit (1 byte) two's-complement number can range

between -128 and +127:

Two’s Complement

Bits Unsigned Integer Two’s Complement

0000 0000 0 0

0000 0001 1 1

0111 1110 126 126

0111 1111 127 127

1000 0000 128 -128

1000 0001 129 -127

1111 1111 255 -1

20

Polling Vs. Interrupt Driven

21

• The processor and data receiving devices are rarely synchronized;

• Polling means actively sampling the status of an external device;

• Polling is useful when something needs constant and urgent attention;

• Interrupt is an event external to the currently executing process that

causes a change in the normal flow of instruction execution;

• Interrupts allows multiple devices or processes to co-exist;

• Interrupts are often ranked by priorities (backing up data on a laptop

with a dying battery is often more important than receiving new

keyboard inputs);

• Keep picking up a phone to check if someone called (Polling) Vs. work

on something else and only pick up the phone when it rings (Interrupt

Driven).

Wireless Communication

22

Many wireless communication devices have serial interfaces.

RF Modem

XBee

Blue-Tooth Modem

MATLAB Functions

23

>> S1= serial('com1') % Initialize the Serial Port

>> set(S1, 'BaudRate', 115200); % Set the Baud Rate

>> fopen(S1); % Open the Serial Port

>> fwrite(S1, [0, 12, 117, 251]); % Writing Binary Data

>> fprintf(S1, ‘Hello Word!') ; % Writing ASCII

>> fread(S1,N); % Reading Binary Data

>> sentence = fscanf(S1, '%s'); % Reading ASCII

See here for an excellent explanation and sample code!

https://www.google.com/#fp=a81b839505796873&q=Tutorial%3A+Serial+Communication+in+Matlab

• Serial communication is the most common way of talking

with sensors or other computers;

• RS232 is an serial communication standard that has been

used for many years;

• A well designed communication packet can improve

efficiency and reduce errors;

• Serial programing in MATLAB is quick and easy, as we

will learn during our first lab session!

Summary

24

• Search Serial Communication, RS-232, Checksum, and

SPI on Wikipedia;

• A tutorial on serial communication using MATLAB;

• Understand RS232.

Further Reading

25

http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/Serial Communication in Matlab V2.doc
http://www.commfront.com/RS232_Protocol_Analyzer_Monitor/RS232_Analyzer_Monitor_Tester_Tutorial.htm

