
Instructor: Yu Gu, Fall 2013

MAE 493G, CpE 493M, Mobile Robotics

11. Introduction to Robot Planning

http://www2.statler.wvu.edu/~irl/

Robot Planning

2

• A robot needs to be able to plan its motion to show intelligent

behaviors;

• The plan can be based on long-term memory (e.g. models), short-term

memory, both, or neither...

• Some planners use global knowledge (e.g. a map) while others uses

only local knowledge (e.g. sensor readings);

• Ideally, a good planner should also consider

the robot’s own (dynamic and kinematic)

constraints, uncertainties in the map, and

imperfections in its sensors and actuators;

• Planning is one of the most studied problem

in robotics, which is tightly related to the

field of Artificial Intelligence (AI).

http://www.willowgarage.com/blog/2009/09/04/robot-comics-path-planning

Configuration Space

3

• A configuration describes the pose of the robot, and the configuration

space C is the set of all possible configurations. For example:

 If the robot is a single point (zero-sized) translating (no rotation) in a 2-

dimensional plane (the workspace), C is a plane, and a configuration can be

represented using two parameters (x, y).

 If the robot is a 2D shape that can translate and rotate, the workspace is still 2-

dimensional. However, a configuration can be represented using 3 parameters

(x, y, θ).

• The set of configurations that avoids collision with obstacles is called the

free space Cfree. The complement of Cfree in C is called the obstacle or

forbidden region;

• Often, it is prohibitively difficult to explicitly compute the shape of Cfree.

However, testing whether a given configuration is in Cfree is efficient. First,

forward kinematics determine the position of the robot's geometry, and

collision detection tests if the robot's geometry collides with the

environment's geometry.

Configuration Space Example

4

• The work space (left) and configuration space (right) for a rectangular

translating (but no rotation) robot (pictured red). Where white = Cfree, gray

= Cobs, dark gray = the objects, light gray = configurations where the robot

would touch an object or leave the workspace;

• Images from: http://en.wikipedia.org/wiki/Motion_planning

http://en.wikipedia.org/wiki/Motion_planning
http://en.wikipedia.org/wiki/Motion_planning

Reactive Planning

5

• Reactive planning use no memory or very short memory;

• Typically, a reactive planner computes just one next action in every

instant, based on the current context;

• The advantage is that a reactive planner operates in a timely fashion and

hence can cope with highly dynamic and unpredictable environments;

• The disadvantage is a lack of global vision;

• Reactive planners are often used in conjunction with a long-term

planner, making this a hybrid approach.

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&docid=zexv41rInFdlkM&tbnid=7Zh3gxmV5_1lcM:&ved=0CAEQjxw&url=http://www.wired.com/geekdad/2009/10/hexbug-nano-creatures-swarming-now/&ei=oz5-UpuiAvWr4APhmIDIBA&bvm=bv.56146854,d.dmg&psig=AFQjCNEnM4GmF33oX6TeWXOuOxflqywDMA&ust=1384091640200846

Braitenberg Vehicle

6

• A Braitenberg vehicle is a concept conceived in a thought experiment

by Valentino Braitenberg to illustrate the abilities of a simple intelligent

agent;

• A Braitenberg vehicle has primitive sensors and actuators (e.g. wheels).,

In the simplest configuration, A sensor is directly connected to an

actuator, so that a sensed signal immediately produces a movement of

the wheel;

• For example, agent has two light detectors (left and right) can have the

following rule: more light right → right wheel turns faster → turns

towards the left, away from the light;

• With a proper design, a Braitenberg vehicle can show many different

behaviors: towards a goal navigation; obstacles avoidance; wall

following; predator avoidance; collective behavior...

Behavior Based Robotics

7

• The Braitenberg vehicle represents the simplest form of behavior based

artificial intelligence and embodied cognition, i.e. intelligent behavior that

emerges from sensorimotor interaction between the agent and its

environment, without any need for an internal memory, representation of

the environment, or inference;

• Most behavior-based systems use no model of the environment. Instead all

the information is from the sensor inputs. The robot uses that information

to gradually correct its actions according to the changes in immediate

environment.

• Behavior-based robots usually show more biological-appearing actions

than their computing-intensive counterparts, which are very deliberate in

their actions;

• Roomba is a good example of behavior-based robots. In fact, Rodney

Brooks, one of the founder for iRobot, was the pioneer in behavior-based

robotics.

Bug Algorithms

8

• A Braitenberg vehicle has no memory; It does not remember what

happened in the past, nor does it accumulate any new knowledge;

• Many planning algorithms assume global knowledge (e.g. map, to be

discussed later); and have memory to remember the path the robot had

been through;

• Bug algorithms are inspired by the behaviors of bugs; it assume only

local knowledge of the environment and a global goal;

• It can perform two types of behaviors: 1) follow a wall (right or left);

and 2) move in a straight line toward the goal;

• Keep in mind that the ability to know the goal position is not trivial! It

requires a high quality navigation system;

• There are several variety of bug algorithms, we will only focus on one

that is called “Bug2”.

Bug2 Algorithm

9

• In Bug2, the line from the starting point to the

goal is called m-line;

• The robot should first head toward the goal

following the m-line;

• If an obstacle is in the way, follow it until the

robot encounter the m-line again closer to the goal;

• Leave the obstacle and continue toward the goal;

• The bug2 algorithm is not optimal because it does

not use the map;

• It cannot see the big picture, but have to make

decisions based on local information and (global) information of the goal;

• Check out our textbook and the MATLAB Robotics Toolbox by Peter

Corke for a bug2 example.

Start

Goal

M-line

Obstacle

Artificial Potential Field

10

• General Idea: ball rolls down hill...

• We can formulate the goal as a low potential (energy) region and obstacle as

high potential (energy) regions;

• The robot should always move to a lower potential state;

• A potential function is a function P that converts spatial locations (e.g., x, y

position) to the potential level;

• P is a linear combination of attractive (goal) and repulsive (obstacles)

potentials:

Attractive Potential Repulsive Potential Total Potential

(,) (,) (,)total attractive repulsiveP x y P x y P x y 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CCwQFjAA&url=http://www.cs.utexas.edu/~pstone/Courses/395Tfall05/resources/week9b-ben-potential-fields.ppt&ei=rPWAUvevMqv-4AODkYGoCg&usg=AFQjCNGJ059ndpMRiX3LDUMytGgg1vSwoA&sig2=EZB-vn5V5h6YuFKvdBhytA
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CCwQFjAA&url=http://www.cs.utexas.edu/~pstone/Courses/395Tfall05/resources/week9b-ben-potential-fields.ppt&ei=rPWAUvevMqv-4AODkYGoCg&usg=AFQjCNGJ059ndpMRiX3LDUMytGgg1vSwoA&sig2=EZB-vn5V5h6YuFKvdBhytA
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CCwQFjAA&url=http://www.cs.utexas.edu/~pstone/Courses/395Tfall05/resources/week9b-ben-potential-fields.ppt&ei=rPWAUvevMqv-4AODkYGoCg&usg=AFQjCNGJ059ndpMRiX3LDUMytGgg1vSwoA&sig2=EZB-vn5V5h6YuFKvdBhytA

Artificial Potential Field (Cont.)

11

• Potential is minimized by following the negative gradient of P:

• The robot will just follow this gradient toward the goal;

• Sensor measurements are used to estimate the gradient at each time step and

there is no need to compute the entire field;

• The potential field approach has several

potential issues, such as get stuck in a local

minima;

• There are ways to

mitigate these

problems.

(,) (,) ,
P P

x y P x y
x y

  
      

  

Robot Goal

Obstacle

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CCwQFjAA&url=http://www.cs.utexas.edu/~pstone/Courses/395Tfall05/resources/week9b-ben-potential-fields.ppt&ei=rPWAUvevMqv-4AODkYGoCg&usg=AFQjCNGJ059ndpMRiX3LDUMytGgg1vSwoA&sig2=EZB-vn5V5h6YuFKvdBhytA

Map Representation: Occupancy Grid

12

• A good way of exploring global knowledge for planning is to use a map;

• There are many ways to represent a map and the position of the vehicle

within the map;

• A simple and very computer-friendly representation is the occupancy

grid;

• The world is treated as a grid of cells and each cell is marked as occupied

or unoccupied. The size of the cell depends on the application;

• This can be viewed as a discretization of

the map, so we have less information

to process;

• For example, a robot can

move in only 8 discrete

directions now:

http://rafabp.wordpress.com/tag/occupancy-grid/

Map Representation: Voronoi Diagram

13

• A Voronoi diagram is a way of dividing space into a number of regions.

A set of points (called seeds) is specified beforehand and for each seed

there will be a corresponding region consisting of all points closer to that

seed than to any other. The regions are called Voronoi cells;

• Voronoi diagrams are often used to generate roadmaps; Imagine driving

to downtown campus.

Shortest Path Problem

14

• With the types of maps discussed earlier, the path planning problem is

often becoming a problem of finding the shortest feasible path. It is

related to the travelling salesman problem;

• In graph theory, the shortest path problem is the

problem of finding a path between two vertices

(or nodes)) in a graph such that the sum of the

weights of its constituent edges is minimized;

• In the figure below, the circles are vertices and

lines and edges. There could be weight (e.g.

distance) assigned for each edge;

• Graph, vertex, and edge can be visualized as

map, intersection, and road here;

• There are many smart methods to solve these

kind of problems; most of them are search based.

http://en.wikipedia.org/wiki/Shortest_path_problem
http://gtresearchnews.gatech.edu/reshor/rh-f04/tsp.html

Dijkstra's algorithm

15

• For a given source vertex in the graph, Dijkstra's algorithm finds the path

with lowest cost (i.e. the shortest path) between that vertex and every other

vertex;

• For example, in the figure below we want to find the shortest distance from

(1) to all other vertex; the distance between the two adjacent vertices are

labeled on the graph;

• Let the node at which we are starting be called the initial node. Let the

distance of node Y be the distance from the initial node to Y. Dijkstra's

algorithm will assign some initial distance values

and will try to improve them step by step;

1.Assign to every node a tentative distance value:

set it to zero for our initial node and to infinity for

all other nodes.

2.Mark all nodes unvisited. Set the initial node as

current. Create a set of the unvisited nodes called

the unvisited set consisting of all the nodes.

http://en.wikipedia.org/wiki/Dijkstra's_algorithm

Dijkstra's algorithm (Cont.)

16

• Dijkstra's algorithm step by step (Cont.):

3.For the current node, consider all of its unvisited neighbors and calculate their

tentative distances. For example, node (3) is marked with a distance of 9, and the edge

connecting it with a neighbor (6) has length 2, then the distance to (6) through (3) will

be 9 + 2 = 11; if this distance is less than the previously recorded tentative distance of

(6), then overwrite that distance. Even though a neighbor has been examined, it is not

marked as "visited" at this time, and it remains in the unvisited set;

4.When we are done considering all of the neighbors of the current node, mark the

current node as visited and remove it from the unvisited set. A visited node will never

be checked again;

5.If the destination node has been marked visited or if

the smallest tentative distance among the nodes in the

unvisited set is infinity (no connection between the

initial node and remaining unvisited nodes), then stop;

6.Select the unvisited node that is marked with the

smallest tentative distance, and set it as the new

"current node" then go back to step 3.

http://en.wikipedia.org/wiki/Dijkstra's_algorithm

A* Algorithm

17

• A* is an extension of Dijkstra's algorithm. A* achieves better time

performance by using heuristics.

• It uses a knowledge-plus-heuristic cost function which include:

1. the past path-cost function, which is the known distance from the starting node

to the current node;

2. a future path-cost function, which is an admissible "heuristic estimate" of the

distance from x to the goal.

• A* is an informed search algorithms,

it first searches the routes that appear

to be most likely to lead towards the

goal;

• A* is commonly used for the path

finding problem in applications such

as games;

http://en.wikipedia.org/wiki/A*_search_algorithm

Dijkstra's algorithm and A*

18

Dijkstra's algorithm A*

Finding a path from a start node (lower left, red) to a goal node (upper right, green) in a robot

motion planning problem. Open nodes represent the "tentative" set. Filled nodes are visited

ones, with color representing the distance: the greener, the farther.

http://en.wikipedia.org/wiki/A*_search_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

Probabilistic Roadmap (PRM)

19

• The Probabilistic Roadmap (PRM) planner consists of two phases: a

construction and a query phase;

• In the construction phase, a roadmap (graph) is built, approximating the

motions that can be made in the environment. First, a random configuration

is created. Then, it is connected to some neighbors, typically either the k

nearest neighbors or all neighbors less than some predetermined distance.

Configurations and connections are added to the graph until the roadmap is

dense enough;

• Each edge of the graph has an associated cost which is the distance

between its two nodes;

• In the query phase, the start and goal configurations are connected to the

graph, and shortest path is obtained (e.g. with Dijkstra's algorithm);

• PRM can handle very large maps or configuration space;

PRM (Cont.)

20

• An advantage of PRM is that once the roadmap is created by the

construction phase we can change the goal and starting points very easily;

only the query phase needs to be repeated;

• The underlying random sampling of the free space means that a different

paths and path lengths is created every time the planner is run;

• The planner can fail by creating

a network consisting of disjoint

components;

• Long narrow gaps between

obstacles are unlikely to be

exploited since the probability

of randomly choosing points

lie along such gaps is very low;

• An PRM example can be found

in our textbook!

Rapidly Exploring Random Tree (RRT)

21

• A Rapidly-exploring Random Tree (RRT) can search a high-dimensional

space by randomly building a space-filling tree;

• RRT can search in a robot’s configuration space take into account the motion

model of the vehicle, relaxing the assumption that the robot is holonomic

(respect the constraints);

• A graph of robot configurations is maintained and each node is a

configuration ξ ∼(x, y, θ). The first node in the graph is some initial

configuration of the robot. A random

configuration ξrand is chosen, and the

node with the closest configuration

ξnear is found – this point is near in

terms of a cost function that includes

distance and orientation. A control is

computed that moves the robot from

ξnear toward ξrand over a fixed period

of time. The point that it reaches is

ξnew and this is added to the graph.

http://en.wikipedia.org/wiki/Rapidly-exploring_Random_Tree

RRT (Cont.)

22

• An important part of the RRT algorithm is computing the control input that

moves the robot from an existing point in the graph to ξrand;

• Rather than the having a complex non-linear controller, the controller

randomly chooses whether to drive forwards or backwards and the steering

angle; this process repeats multiple times and the control input with the best

performance (end point nearest to ξrand) is chosen;

• Therefore, RRT involves both path

planning and controller design!

• The point ξrand is discarded if it lies

within an obstacle, and the point ξnear

will not be added to the graph if the

path from ξnear toward ξrand intersects

an obstacle;

• An RRT example can be found in

our textbook as well!

• The ideas for robot planning has evolved from centralized

planning, to reactive planning, to hybrid approaches, and

then to probabilistic approaches;

• Different approaches have different advantages and

limitations and will find different applications;

• The key is to properly use past (e.g. models), current (e.g.

sensor measurements), and predicted (based on models)

information in an efficient manner.

Summary

23

• Our Text Book!

• http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-

Bug-Alg_howie.pdf

• http://www.scribd.com/doc/126604881/Week9b-Ben-

Potential-Fields

• Search Wikipedia for keywords ‘motion planning’,

‘Shortest path problem’, ‘Braitenberg Vehicle’, ‘Behavior-

based robotics’, ‘Voronoi Diagram’, ‘Dijkstra's

algorithm’, ‘A* algorithm’, ‘Probabilistic Roadmap’, and

‘Rapidly Exploring Random Tree ’

Further Reading

24

http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf
http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf
http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf
http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf
http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf
http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf
http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf
http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf
http://www.scribd.com/doc/126604881/Week9b-Ben-Potential-Fields
http://www.scribd.com/doc/126604881/Week9b-Ben-Potential-Fields
http://www.scribd.com/doc/126604881/Week9b-Ben-Potential-Fields
http://www.scribd.com/doc/126604881/Week9b-Ben-Potential-Fields
http://www.scribd.com/doc/126604881/Week9b-Ben-Potential-Fields
http://www.scribd.com/doc/126604881/Week9b-Ben-Potential-Fields
http://www.scribd.com/doc/126604881/Week9b-Ben-Potential-Fields
http://www.scribd.com/doc/126604881/Week9b-Ben-Potential-Fields

