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5. Measurement and Calibration 
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A Perfect Sensor 
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• Connection of the sensor does not distort the measured object itself 

(high input impedance);  

• Output instantly reaches and stabilizes at the measured value (fast 

response); 

• Output is sufficiently large (high sensitivity); 

• Device is not sensitive to other parameters (low cross-sensitivity); 

• Measures large and small signals (high dynamic range); 

• Measures fast and slow changing signals (high bandwidth); 

• Output remains at the measured value unless the measured signal itself 

changes (low noise and drift); 

• Output varies in proportion to the signal level of the measured object 

(static linearity); 

• Low size, weight, cost, and power consumption. 



Making Good Measurements 
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• But sensors are never perfect (although many latest digital sensors are 

quite good); 

• A measurement system is also not just about sensors. It includes the 

power system, signal conditioner, data acquisition hardware, 

communication device, operator, among others; 

• Where to place the sensors is also of great importance; 

Everything has to work in harmony to 

get the best results! 



Measurement = Truth + Error 
 

We don’t typically know the Truth… 

 

Error always exist, which includes:  
• Systematic Errors: Systematic errors occur when there is a problem 

in the measurement system that affects all measurements in the same 
way; 

 

• Random Errors: Random errors occur because of random and 
inherently unpredictable events in the measurement process.  

Measurement Error 
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• Caused by any factors that randomly affect measurement of the 

variable across the samples; 

• Each person’s skill, experience, attitude, or mood can affect their 

performance; 

• Random error does not have consistent effects across the entire 

sample. If we could see all the random errors in a distribution, the 

mean would be zero; 

• The important property of random error is that it adds variability to 

the data but does not affect average performance for the group.  

• Random error can not be removed through calibration. 

 

 

 

 

Random Error 

Random Errors can be Reduced Using Statistical Methods 
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Quantization Error 
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• Quantization error or round-off error is the 

difference between the actual analog value 

and quantized digital value; 

• The maximum error we have here is 1 LSB 

(Least Significant Bit). This 0 to 1 LSB 

range is known as the “quantization 

uncertainty”; 

• An error of 0 to 1 LSB is not as desirable 

as is an error of ±1/2 LSB, so we could 

introduce a ½ LSB offset into the ADC to 

force an error range of ±1/2 LSB (change 

the ‘floor’ function to ‘round’); 

• Quantization error is a form of random 

error. 



• Systematic error is caused by any factors that systematically affect 

measurement of the variable across the sample; 

• Unlike random error, systematic errors tend to be consistently 

either positive or negative - because of this, systematic error is 

sometimes considered to be bias in measurement; 

• Systematic errors often occur reproducibly from faulty calibration 

of equipment or observer bias; 

• Statistical analysis in generally is not useful for reducing the 

systematic errors, but rather corrections must be made based on 

experimental conditions. 

 

 

Systematic Error 

Systematic Errors can be Reduced Through a Careful Experiment 

Design and System Calibration  

7 



Calibration 

8 

• Calibration consists of comparing the output of the instrument under 

test against the output of an instrument of known accuracy when the 

same input is applied to both instruments; 

• This procedure is carried out for a range of inputs covering the whole 

measurement range of the instrument.  

• Calibration ensures that the measuring accuracy of all instruments used 

in a measurement system is known over the whole measurement range, 

providing that the calibrated instruments are used in environmental 

conditions that are the same as  

those under which they were  

calibrated.  

• For use of instruments under  

different environmental conditions, 

appropriate correction has to be  

made. 



Simple Linear Calibration 
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• Assuming the input-output relationship of an instrument can be 

approximated with a linear function, two constants, C1  and  C2, can be 

used for calibrating this instrument. C1  is used as the zero offset value, 

and C2  is used as the slope or gain adjustment. 

• The calibrated instrument measurement Mcal can be determined from 

the raw measurement Mraw with the following relationship: 

 

• How to calculate the parameters 

 C1  and  C2  is discussed next. 

1 2( )cal rawM C C M  

Mraw 

Mcal 

C1 

C2-slope 



Two Point Calibration Method 
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• Allow the measurement instrument to warm up and stabilize for an 

adequate amount of time; 

• Use the instrument to measure an accurately known and stable reference 

value Mref1  and record the measurement Mraw1; 

• Repeat Step 2 for another known reference value Mref2 and the 

corresponding recorded measurement Mraw2. The two known reference 

values should be near the bounds of the intended operating range; 

• Determine the value of C1 and C2 from the following calculations: 

 
2 1 2 1 2( ) ( )ref ref raw rawC M M M M  

1 1 1 2( )ref rawC M M C  

1 2( )cal rawM C C M  



Multi-Point Calibration w/ MATLAB 
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• Use multiple points for calibration can provide a better understanding for 

the sensor performance; 

• Matlab ‘polyfit’ function is ideal for multi-point calibration. 

• A sample MATLAB code is provided below: 

 

 

 

 

 

 

• The results are: p=[1.1231   -0.5229], which means: 

0.5229 (1.1231 )cal rawM M   

x=[0 1 2 3 4 5 6 7 8 9]'; % x is the raw measurement 

% y is the measurement from the calibration device 

y=[-0.75 0.7 1.95 3.02 3.97 5.01 6.05 7.04 8.5 9.82]';  

p = polyfit(x,y,1)  % perform linear calibration 

f1 = polyval(p,x);  % evaluate the calibration polynomial 

plot(x,y,'o',x,f1,'-') 

xlabel('x (raw measurement)'); 

ylabel('y (cal measurement)'); 

title('Linear Calibration') 

legend('cal data', 'cal curve') 

grid on 



Linear Calibration Result 
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• What if the normal operation range is [2, 7]? 
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Nonlinear Calibration w/ MATLAB 
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• Sometime the sensor output is highly nonlinear so the linear calibration 

may not be adequate. 

• Again, the Matlab ‘polyfit’ function is very useful: 

 

 

 

 

 

 

• The results are: p=[1.1362   -1.1825    0.6705], which means: 

x=[0 1 2 3 4 5 6 7 8 9]'; % x is the raw measurement 

% y is the measurement from the calibration device 

y=[-0.35 0.9 3.25 7.5 15 26 33 45 62 85]'; 

p1 = polyfit(x,y,1) % perform linear calibration 

f1 = polyval(p1,x); 

p2 = polyfit(x,y,2) % perform 2nd order calibration 

f2 = polyval(p2,x); 

plot(x,y,'o',x,f1,'-',x,f2,'r') 

xlabel('x (raw measurement)'); 

ylabel('y (cal measurement)'); 

title('Linear and 2nd Order Calibration') 

legend('cal data', 'linear cal','2nd order') 

grid on 

20.6705 1.1825 1.1362cal raw rawM M M    



Second Order Calibration Result 
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• The second order calibration is clearly shown better performance than 

the linear calibration here, but with added compexity; 

• Whether it worth the effort to do higher-order calibration depend on the 

particular application. 
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Magnetometer Errors 
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• Magnetometers are commonly used for North finding (e-compass); 

• The calibration of the magnetometer is however a highly complex 

process; 

• The magnetometers readings are subject to two types of local distortions: 

hard iron and soft iron effects; 

• The hard iron effect is caused by the presence of local permanently 

magnetized ferromagnetic components. 

http://www.ecnmag.com/articles/2010/11/accurate-compassing-harsh-environments


The Soft Iron Effect 
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• The soft iron effect is the interfering magnetic field induced by the local 

presence of normally unmagnetized ferromagnetic components;  

• These components distorts the local magnetic field differently as it 

rotates, which can cause difficulty in magnetometer calibration.  

http://memsblog.wordpress.com/2011/03/22/hard-and-soft-iron-magnetic-compensation-explained/


Magnetometer Calibration 
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• There are a total of 10 parameters that needs to be calibrated for a set of 

3-axis magnetometers; 

• This include a   

geomagnetic field  

strength parameter, 

3 offset parameters  

(hard iron), 3 scaling 

parameters (soft iron)  

and  3 rotation  

parameters (soft iron); 

• We will learn more  

about the detailed  

calibration procedure 

later in this class. 

http://www.ngdc.noaa.gov/geomag/magfield.shtml
http://www.ecnmag.com/articles/2010/11/accurate-compassing-harsh-environments
http://www.honzinovo.cz/projects/heli/sensors/calibration/


• Both spatial and temporal resolution of the sampling process are very 
important. 

• If we sample below the a certain rate (undersampling), reconstructed 
signal will be different from the original. This phenomenon is called 
aliasing.  

• Aliasing effect can often be reduced with an increased sampling rate or 
through the use of a low-pass filter.  

• The cut-off frequency of the anti-aliasing filter  
should be below half of the sampling rate. 

 

Aliasing and Anti-Aliasing 
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• If a band-limited signal x(t) contains no frequencies higher 
than B hertz, it must be sampled properly at a rate fs>2B.  

• A signal sampled at fs=2B is said to be Nyquist sampled. 
No information is lost if a signal is sampled at this rate, 
and no additional information is gained by sampling faster 
than this rate (in theory...). 

• If the highest frequency B in the original signal is known, 
2B is the lower bound on the sampling frequency for 
which perfect reconstruction can be assured. This is called 
the Nyquist rate.  

• If instead fs is known, fs/2 gives an upper bound for 
frequency components of the signal to allow for perfect 
reconstruction. This upper bound fn = fs/2 is the Nyquist 
frequency. 

 

Shannon-Nyquist's Sampling Theorem 
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• Practical sampling rate range:  

 

• This is called oversampling, which is the process of sampling a signal 
with a frequency significantly higher than the Nyquist rate; 

• Oversampling can generally improve the response speed and also 
provide improved smoothness in the response; 

• Higher sampling rate can also reduce the delay between a command 
change and the system response to the command change. In a digital 
control system, the command can be delayed up to a full sample period; 

• The sampling rate has a major impact on how well a digital controller 
performs in the presence of plant disturbances. 
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Practical Sampling 

However, how fast can you sample is often limited by the 

hardware and cost. For Example, on SMART, we can only 

sample at ~10Hz because of the slow MATLAB computing. 
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Representation of Engineering Data 
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• MATLAB provides many ways to plot the data and you just have to be 

creative in using them.   
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Takeoff

http://www2.statler.wvu.edu/~irl/IRL_WVU_Online_MATLAB_Plot_Tips_V1.0_06_28_2013.pdf


• Measurement error can arise anywhere in the measurement 

link; 

• Systematic errors can be reduced through careful 

experiment design and calibration; 

• Random errors can be reduced through statistical methods; 

• Linear calibration is the simplest and most popular method; 

• Magnetometers are affected by soft iron and hard iron 

distortions, thus difficult (but not impossible) to calibrate.  

• A practical sampling rate is typically 3-20 times the 

Nyquist rate (if only considering the highest frequency 

component in the signal); 

 

Summary 
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• Sensor Performance Specification: 

http://ieeexplore.ieee.org/iel5/37/20344/00939939.pdf?tp=

&isnumber=&arnumber=939939  

• MATLAB Polyfit: 

http://www.mathworks.com/help/matlab/data_analysis/pro

grammatic-fitting.html  

• Hard and soft iron magnetic compensation explained 

http://memsblog.wordpress.com/2011/03/22/hard-and-

soft-iron-magnetic-compensation-explained/  

• Presenting Engineering Data in MATLAB 

http://www2.statler.wvu.edu/~irl/IRL_WVU_Online_MA

TLAB_Plot_Tips_V1.0_06_28_2013.pdf  

 

 

Further Reading 
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