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Abstract—Kalman filters provide an important technique for estimating the states of engineering 

systems.  With several variations of nonlinear Kalman filters, there is a lack of guidelines for filter selection 

with respect to a specific research or engineering application.  This creates a need for an in-depth discussion 

of the intricacies of different nonlinear Kalman filters.  Particularly of interest for practical state estimation 

applications are the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF).  This tutorial is 

divided into three self-contained articles.  Part I gives a general comparison of EKF and UKF, and offers a 

guide to the selection of a filter.  Part II presents detailed information about the implementation of EKF and 

UKF, including equations, tips, and example codes.  Part III examines different techniques for determining 

the assumed noise characteristics of the system as well as tuning procedures for these nonlinear Kalman 

filters.   

Index Terms—Kalman Filters, Nonlinear Filters, Extended Kalman Filter, Unscented Kalman Filter 

 

I. INTRODUCTION 

The Kalman filter (Kalman, 1960) is a popular and effective state estimator for linear systems.  It provides a way to 

estimate the state vector using an optimal observer gain to minimize the expected Mean Square Error (MSE) of the estimate.  

There are many different applications of the Kalman filter, and its statistical properties have been comprehensively studied 

(Anderson and Moore, 1979).  Nonlinear systems, however, require approximations in order to handle the nonlinearity in the 

state dynamic equations and/or the output equations of the system.  While there are many variations on the Kalman filter for 

nonlinear systems, two of the most common ones are the Extended Kalman Filter (EKF) (Kalman and Bucy, 1961) and the 

Unscented Kalman Filter (UKF) (Julier and Uhlmann, 1997).  These two filters both operate within the existing Kalman filter 

framework, but use different approaches to handle the nonlinearity.  The EKF uses an analytical linearization approach 
involving Jacobian matrices, while the UKF uses a statistical approach called the Unscented Transformation (UT) (Julier and 

Uhlmann, 1997). 

 

II. SELECTION OF  A NONLINEAR KALMAN FILTER 

When starting to approach a nonlinear state estimation problem, the practical question becomes:  which filter should I 

use, and why?  There is no simple answer for this question.  Several existing works claim superiority of the UKF over the 

EKF due to the more accurate linearization technique (Julier and Uhlmann, 1997; Orderud, 2005; Sadhu et al., 2006; 
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Kandepu et al., 2008).  While this claim has been verified for certain example problems, the advantage is not always 

significant.  Additionally there are other practical considerations to consider between the EKF and UKF other than just the 

accuracy of the filter.  This article briefly explores both the technical and practical differences between the EKF and UKF, 

and offers some general guidelines regarding the selection of a nonlinear filtering technique. 

A. Comparison of Estimation Accuracy 

First, the accuracy of the two filters is considered.  Some simulation studies have shown that the UKF consistently and 
significantly outperforms the EKF for certain problems such as bearing-only tracking (Orderud, 2005; Sadhu et al., 2006) and 

the Van der Pol oscillator (Kandepu et al., 2008).  However, other researchers have found that the differences between the 

performance of the EKF and UKF are small (LaViola Jr., 2003; Saulson and Chang, 2003; Gross et al., 2012; Rhudy et al., 

2013a).  A thorough sensitivity analysis of both filters for the problem of GPS/INS attitude estimation revealed that two 

filters give a similar result for that particular problem, even as a function of various design parameters such as noise 

covariance tuning, sampling rate, and initialization error (Rhudy et al., 2013a).  Other works state that the only noticeable 

performance difference between EKF and UKF occur under large initialization errors, which are handled better by the UKF 

(Crassidis, 2005; Fiorenzani et al., 2008; Wendel, et al., 2006).  Basically, the differences between the EKF and UKF become 

more significant as the nonlinearity in the system increases.  Simulation studies of highly nonlinear problems reveal the 

advantages of the UT over analytical linearization.  Also, some problems such as the attitude estimation problem studied in 

(Gross et al., 2012; Rhudy et al., 2013a), while nonlinear in nature, do not contain a high enough level of nonlinearity in 

order to notice the advantages of the UKF.  Additionally, for certain problems, a large initialization error will cause the 
linearization errors to become much more significant, thus explaining the differences in EKF and UKF initial error 

convergence.  In general, depending on the application of interest, the UKF may provide improved performance for highly 

nonlinear problems; however for many applications that do not contain such strong nonlinearity, the EKF provides nearly 

identical estimation performance.    In addition to the case studies discussed earlier, a thorough analytical comparison of the 

linearization techniques of these two filters for different nonlinear functions can be found in (Rhudy et al., 2013b). 

B. Examples Comparing Linearization Errors of EKF and UKF 

To help illustrate the differences in the EKF and UKF linearization techniques, a few examples are provided.  Each 

example considers the nonlinear transformation of a 2D normally distributed random variable, x, with covariance matrix, P.  

Both the analytical (as in EKF) and statistical (as in UKF) linearization techniques are applied to a nonlinear function y = f(x) 

in order to recover the mean and covariance after the transformation.  A Monte Carlo approach using 106 points is used to 

provide a ‘truth’ reference for the post transformation statistics, i.e. 106 points are generated from the distribution of x, 
propagated through f(x), and then the mean and covariance are calculated based on the transformed points. 

First, the following vector-valued nonlinear function is considered 
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Three different cases of prior distribution are considered, as summarized in Table 1. 

Table 1.  Different Cases of Prior Distribution 
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For each of the cases described in Table 1, the prior distribution is shown on the left, and the post transformation statistics are 

shown on the right of Figure 1, Figure 2, and Figure 3.  In these figures, the ellipses are used as a visual representation of the 

covariance, i.e. the ellipse is a 1-σ constant probability curve.  Note that while the same nonlinear function is considered, 
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different effects of nonlinearity are observed by varying the prior statistics, i.e. starting from a different point along the 

nonlinear curve with different levels of uncertainty changes how much nonlinearity is experienced during the transformation.  

Case 1 shown in Figure 1 demonstrates nearly identical performance of EKF and UKF, both of which converge to the truth 

determined from Monte Carlo.  Example MATLAB code for Case 1 is provided in the Appendix.  Case 2 shown in Figure 2 

demonstrates a slightly worse performance of the EKF relative to the UKF, which is able to closely match the Monte Carlo 

truth.  Finally, Case 3 shown in Figure 3 offers a situation where the EKF is significantly less accurate in mean than the UKF, 
while the covariance estimates are similarly correct.   
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Figure 1.  Example Linearization Comparison:  Case 1 
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Figure 2.  Example Linearization Comparison:  Case 2 
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Figure 3.  Example Linearization Comparison:  Case 3 

 

These three cases show how even for a particular problem, the linearization methods can vary in their results just by changing 

the prior conditions.   

One additional example is also considered, which contains a highly nonlinear function 
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For this example, the prior conditions are considered as 
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Using these conditions, the prior and post transformation statistics are given in Figure 4.  This example clearly demonstrates 

the superior performance of the UKF linearization technique over the EKF under strong nonlinearities.  There are still some 

errors in the UKF covariance estimate, but the mean estimate is much more accurate than the EKF. 
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Figure 4.  Example Linearization Comparison:  Case 4 
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C. Comparison of Computational Requirements 

Although estimation performance is an important consideration for nonlinear filters, there are other practical issues 

related to the filter selection.  Perhaps one of the most important practical considerations is the computational requirements of 

the filter, especially for on-line applications.  Based on both theoretical and empirical analyses of a particular application, the 

EKF was found to be significantly (approximately 10 times) more computationally efficient than the UKF (Gross et al., 2012; 

Rhudy et al., 2013a).  The computational is application dependent, however, due to the dependence on the number of states 

and the nonlinear functions (and their derivatives for EKF) for each particular problem.  The relative complexity of the 

nonlinear functions and their derivatives is also important, as the UKF requires the calculation of the nonlinear functions 

multiple times (proportional to the number of states), while the EKF requires this calculation only once, but in addition 

requires the calculation of derivatives to construct the Jacobian matrices.  In general, the EKF seems to be more 

computationally efficient for most applications, as long as the EKF is using analytically determined Jacobian matrices instead 

of numerical derivatives.   

D. Other Practical Issues 

While the calculations of Jacobian matrices for the EKF may seem straightforward, in practice these calculations are 

prone to errors.  Many mistakes in EKF implementations are due to mistakes in either the calculation or coding of the 

Jacobian matrices, which can be long and complex.  The UKF does not require this calculation, and therefore is typically 

easier and faster to implement than an EKF.  Another advantage of the UKF in this regard is that changes to the problem 

formulation can be made much more easily within the UKF, since Jacobian matrices do not need to be calculated.  On the 

other hand, the EKF tends to be easier to understand conceptually than the UKF, which tends to make the UKF harder to 

implement initially, especially for students who are new to the state estimation process.  These implementation issues are 

discussed in detail in Part II of this tutorial. 

 

III. CONCLUSIONS 

In conclusion, the EKF and UKF each serve a practical purpose.  In fact, there are many situations where either filter 
could be used effectively, and the differences between the two might be negligible.  One situation that merits the use of the 

UKF is highly nonlinear problems.  Another benefit of the UKF is that it tends to be easier to implement and modify, which 

makes it a great tool for prototyping for a filtering application.  The EKF, however, tends to be more computationally 

efficient, which increases its practicality for on-line and real-time applications.  The EKF is also a bit easier to understand 

conceptually, so it can provide a better starter filter for students to learn about nonlinear state estimation. 
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APPENDIX:  EXAMPLE MATLAB CODE (CASE 1) 

% Example code for linearization comparison  

clear all 

  

% Prior conditions 

x = [1; 2]; 

P = 1e-3*[1 0; 0 2]; 

  

% EKF Approximations 

ye = [x(1)^2 + x(2)^2; x(1)*x(2)]; 

A = [2*x(1) 2*x(2); x(2) x(1)]; 

Pe = A*P*A'; 

  

% UKF Approximations 

alpha = 0.5; % Define primary scaling parameter 

beta = 2;    % Define secondary scaling parameter (Gaussian) 

L = 2;       % Number of states 

lambda = L*(alpha^2-1); 

eta = sqrt(L + lambda); 

wm = zeros(2*L+1,1); 

wc = zeros(2*L+1,1); 

wm(1) = lambda/(L + lambda); 

wc(1) = lambda/(L + lambda) + (1 - alpha^2 + beta); 

for i = 2:length(wm) 

    wm(i) = 1/(2*(L + lambda)); 

    wc(i) = 1/(2*(L + lambda)); 

end 

sP = sqrtm(P); 

chi = [x x*[1 1]+eta*sP x*[1 1]-eta*sP]; 

ysig = zeros(2,2*L+1); 

for i = 1:(2*L+1) 

    ysig(:,i) = [chi(1,i)^2 + chi(2,i)^2; chi(1,i)*chi(2,i)]; 

end 

yu = ysig*wm; 

Pu = zeros(2,2); 

for i = 1:(2*L+1) 

    Pu = Pu + wc(i)*(ysig(:,i)-yu)*(ysig(:,i)-yu)'; 

end 

  

% Monte Carlo Simulation 

nsim = 1e6; 

R = chol(P); 

z = repmat(x',nsim,1) + randn(nsim,2)*R; 

z = z'; 

ysv = zeros(2,nsim); 

for i = 1:nsim 

    ysv(:,i) = [z(1,i)^2 + z(2,i)^2; z(1,i)*z(2,i)]; 

end 

ys = mean(ysv,2); 

Ps = cov(ysv'); 

  

% Create Ellipses based on mean and covariance 

[Xe Ye] = ellip2D(ye,Pe,151); 

[Xu Yu] = ellip2D(yu,Pu,151); 

[Xs Ys] = ellip2D(ys,Ps,151); 

[X0 Y0] = ellip2D(x,P,151); 

  

% Plot Results 

figure; subplot(121); plot(X0,Y0,'k-',x(1),x(2),'ko'); 

xlabel('x_1'); ylabel('x_2'); legend('Prior Cov','Prior Mean'); 

subplot(122); 

plot(Xe,Ye,'b.',ye(1),ye(2),'bs'); hold on; 

plot(Xu,Yu,'r.',yu(1),yu(2),'r*'); hold on 

plot(Xs,Ys,'k-',ys(1),ys(2),'ko'); hold off 

xlabel('y_1'); ylabel('y_2'); 

title('Mean and Covariance After Nonlinear Transformation y = f(x)'); 

legend('EKF Cov','EKF Mean','UKF Cov','UKF Mean','True Cov', 'True Mean'); 
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% Function to calculate covariance ellipses 
function [X Y] = ellip2D(x,P,steps) 

  
% Calculate "standard deviation" matrix 
P = sqrtm(P); 

  
% Determine rotation angle of ellipse 
T = 0.5*atan(-2*P(1,2)/(P(1,1)^2-P(2,2)^2)); 
% Pre-calculate trigonometric functions for ellipse rotation 
sinbeta = sin(T); 
cosbeta = cos(T); 

  
% Calculate equatorial radii of ellipse 
a = sqrt(P(1,1)^2*sin(T)^2+2*P(1,2)*sin(T)*cos(T)+P(2,2)^2*cos(T)^2); 
b = sqrt(P(1,1)^2*sin(T+pi/2)^2+2*P(1,2)*sin(T+pi/2)*cos(T+pi/2)+P(2,2)^2*cos(T+pi/2)^2); 
a = abs(a); 
b = abs(b); 

  
% Generate points along the ellipse 
alpha = linspace(0, 360, steps)' .* (pi / 180); 
% Pre-calculate trigonometric functions for ellipse points 
sinalpha = sin(alpha); 
cosalpha = cos(alpha); 

  
% Calculate Cartesian (x,y) coordinates of ellipse points 
X = x(1) + (a * cosalpha * sinbeta + b * sinalpha * cosbeta); 
Y = x(2) + (a * cosalpha * cosbeta - b * sinalpha * sinbeta); 
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